Poly(lactic acid), curcumin, poly(propylene carbonate), fiber, RSM


The initial phase of this study was to investigate the effect of polypropylene carbonate (PPC) additions in polylactic acid (PLA)/curcumin (Cur) blends. It was observed that the presence of curcumin particulates behaved as a reinforcement filler for PPC additions up to 30 wt%. A specific composition was then invested to find the correlation between the fiber diameter and melt-spinning process parameters using central composite design (CCD), a subset of response surface methodology (RSM). Results showed that the spinning temperature had a greater effect than the spinning speed on the diameter of PLA/PPC/curcumin fiber. The response model indicated a good correlation between experimental and predicted values since the ANOVA analysis demonstrated high F-value of model adequacy at 10.34, non-significant lack of fit, precision adequacy of 9.94 and R2 value of 0.80. Therefore, this model can be used in a future study to establish the processing parameters for controlled fiber production.

ABSTRAK: Fasa awal kajian ini adalah bagi mengkaji kesan penambahan karbonat polipropilin ke dalam campuran asid prolaktik (PLA)/kurkumin (Cur). Didapati kehadiran zarah-zarah kurkumin bertindak sebagai pengisi bantuan pada penambahan PPC sehingga 30 wt%. Komposisi tertentu kemudian dikaji bagi mencari kaitan diameter fiber dan parameter proses putaran-cair menggunakan rekaan komposit utama (CCD), dan subset metodologi gerak-balas permukaan (RSM). Keputusan menunjukkan suhu putaran berpengaruh besar berbanding kelajuan putaran pada diameter fiber PLA/PPC/kurkumin. Model yang bertindak balas ini menunjukkan kaitan yang baik antara eksperimen dan nilai yang dijangka kerana analisis ANOVA menunjukkan nilai-F yang tinggi pada 10.34 kecukupan model, tidak-ketara kurang padanan, kecukupan ketepatan pada 9.94 dan nilai R2 sebanyak 0.80. Oleh itu, model ini boleh digunakan pada kajian akan datang bagi menghasilkan parameter proses pengeluaran fiber kawalan.


Download data is not yet available.


Lyu S, Untereker D. (2009) Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci., 9:4033-4065.

Xiaon L, Wang B, Yang G, Gauthier M. (2011) Poly(lactic acid)-based biomaterials: Synthesis, modification and applications. Biomedical Science, Engineering and Technology, Intech, Croatia.

Casalini T, Rossi F, Castrovinci A, Perale G.(2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and application. Front. Bioeng. Biotechnol., 7:1-16.

Liu L, Wei H, Wang Z, Li Q, Tian N. (2018) Simultaneous enhancement of strength and toughness of PLA induced by miscibility variation with PVA. Polymers, 10(10):1178.

Saini P, Arora M, Kumar MR. (2016) Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv., 107: 47-59.

Qin SX, Yua CX, Chen XY, Zhoua HP, Zhao LF (2018) Fully biodegradable poly(lactic acid)/poly(propylene carbonate) shape memory materials with low recovery temperature based on in situ compatibilization by dicumyl peroxide. Chinese J Ploym Sci., 36:783-790.

Gao L, Huang M, Wu Q, Wan X, Chen X, Wei X, Yang W, Deng R, Wang L, Feng J. (2019) Enhanced poly(propylene carbonate) with thermoplastic networks: A cross-linking role of maleic anhydride oligomer in CO2/PO copolymerization. Polymers., 11:1467-1479.

Wang S, Huang Y, Liao B, Lin G, Cong G, Chen L. (1997) Structure and properties of poly(propylene carbonate). Int J Polym Ch. 3(2):131-143.

Yao M, Deng H, Ma F, Wang K, Zhang Q, Chen F, Fu Q. (2011) Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Polym Lett, 5(11):937-949.

Ning W, Xingxiang Z, Jiugao Y, Jianming F. (2008) Partially miscible poly(lactic acid)blend-poly(propylene carbonate) flled with carbon black as conductive polymer composite. Polym Int., 57:1027–1035.

Ma X, Yu J, Wang N. (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci Phys., 44(1):94-101.

Aggarwal B, Sung B. (2009) Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol Sci., 30(2):85-94

Prasad S, Tyagi AK, Aggarwal BB. (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat., 46(1):2-18.

Ramalingam N, Natarajan TS, Rajiv S. (2015) Preparation and characterization of electrospun curcumin loaded poly(2-hydroxyethyl methacrylate) nanofiber--a biomaterial for multidrug resistant organisms. J. Biomed. Mater. Res. Part A, 103(1):16-24.

Morais DS, Guedes RM and Lopes MA. (2016) Antimicrobial approaches for textiles: From research to market. Materials, 9(6):498.

Xia F, Chun Z, Dong-bo L, Jun Y, Hua-ping L. (2013) The clinical applications of curcumin: Current state and the future. Curr. Pharm. Des., 19(11):2011-2031.

Yan C, Jie L, Yuqin W, Yanna F, Hongbo W, Weidong G. (2012) Preparation and blood compatibility of electrospun PLA/Curcumin composite membranes. Fiber Polym., 13(10):1254-1258.

Chen Y, Lin J, Fei Y, Wang H, Gao W (2010) Preparation and characterization of electrospinning PLA/Curcumin composite membranes. Fiber Polym., 11(8):1128-1131.

Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, Kohane DS. (2012) Electrospun drug-eluting sutures for local anesthesia. J Control Release, 161:903-909.

Yördem OS, Papila M, Mencelog?lu Y. (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater Design, 29:34-44.

Mohamed OA, Masood SH, Bhowmik JL. (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf., 3(1):42-53.

Ghoreishian SM, Fereydooni A, Nasser S, Asadolahi T, Beigpour N, Ghoreishian M. (2017) Optimization of melt-spinning parameters of poly(ethylene terephthalate) partially oriented multi-filament yarn in an industrial scale: Central composite design approach. Fiber Polym., 18:1280-1287.

Garnier L, Duquesne S, Casetta M, Lewandowski M, Bourbigot S (2010) Melt spinning of silane–water cross-linked polyethylene–octene through a reactive extrusion process. React Funct Polym., 70(10):775-783.

Shu?Ying G, Jie R. (2005) Process optimization and empirical modeling for electrospun poly(D,L-lactide) fibers using response surface methodology. Macromol Mater Eng., 290 (11):1097-1105.

Dhura B, Saraswathy N, Maheswaran R, Sethupathi P, Vanitha P, Vigneshwaran S, Rameshbabu V. (2013) Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front Mater Sci., 7(4):350–361.

Sharifah ISS, Qairol AAB, Noor Azlina H, Nor Khairusshima MK (2017) Thermal, structural and mechanical properties of melt drawn curloaded poly(lactic acid) fibers. Procedia Eng., 184:544-551.

Yuan X, Mak AF, Kwok KW, Yung BK, Yao K. (2001) Characterization of poly(L-lactic acid) fibers produced by melt spinning. J App Polym Sci., 81:251-260.

Pawar RP, Tekale SU, Shisodia SU, Totre JT, Domb AJ (2014) Biomedical applications of poly(lactic acid). Recent Pat Regen Med., 4:40-51.

Behera SK, Meena H, Chakraborty S, Meikap BC. (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol., 28 (4):621-629.

Shah SAA, Imran M, Lian Q, Shehzad FK, Athir N, Zhang J, Cheng J. (2018) Curcumin incorporated polyurethane urea elastomers with tunable thermomechanical properties. React Funct Polym., 128:97-103.

Yu C, Zhao R, Wang H. (2018) Mechanical property of PLA/PPC blends. Int J Trend Res Dev., 5(2):206-208.

Liu H, Zhang J. (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Pol Phys., 49:1051-1083.

Liu Y, Cai Y, Jiang X, Wu J, Le X. (2015) Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan. Food Hydrocoll., 52:564-572.

Kim DK, Kim JI, Sim BR, Khang G. (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C., 78:571-578.

Muthuraj R, Mekonnen T. (2018) Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer, 145:348-373.

Deng Y, Yu C, Wongwiwattana P, Thomas NL. (2018) Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology. J Polym Environ., 26:3802-3816.

Gao J, Bai H, Zhang Q, Gao Y, Chen L, Fu Q. (2012) Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Polym Lett., 11:860–870.

Haneef INHM, Shaffiar NM, Buys YF, Hamid M, Shaharuddin SIS. (2018) Morphologies and mechanical properties of polylactic acid / polypropylene carbonate (PLA/PPC) blends by solvent casting method. In Proceedings of the International Conference Biotechnology Engineering : September 19-20, Kuala Lumpur.

Mofokeng J, Luyt A. (2015) Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(?-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polym Test, 45:93-100.

Nocke A, Wolf M. (2012) Nanoparticle-based Resistors and Conductors in Bio and Nano Packaging Techniques for Electron Devices: Advances in Electronic Device Packaging. Springer-Verlag, Berlin.

Kim SY, Noh YJ, Yu J. (2015) Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Compos Part A Appl Sci Manuf., 69:219-225.

Wu D, Zhang Y, Zhang M, Yu W. (2009) Selective localization of multiwalled carbon nanotubes in poly(?-caprolactone)/polylactide blend. Biomacromolecules, 10:417-424.

Asmatulu R, Khan WS. (2019) Synthesis and applications of electrospun nanofibers. Elsevier, Amsterdam.

Vlachopoulos J, Strutt D. (2003) The role of rheology in polymer extrusion. In Proceedings of the Extrusion Minitec and Conference: From Basics to Recent Developments: 26th October 2004, Du¨sseldorf; pp 107–132.

Kong C, Jo K, Jo HKNK. (2009) Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym Eng Sci., 49(2):391-396.

M. Niaounakis (2015) Biopolymers: Applications and Trends, Elsevier, Oxford.

Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L. (2013) Effect of viscosity and electrical ccnductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text Res., 83(6):606-617.

Ko J, Jun S, Lee JK, Lee PC, Jun MB. (2015) Effects of molecular weight and temperature on fiber diameter of poly(?-caprolactone) melt electrospun fiber. J. Korean Soc Manuf Technol Eng., 24(2):160-165.

Aslan N. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for coal cleaning. Fuel, 86(5-6):769-776.

Clark C, Williges RC. (1973) Response surface methodology central-composite design modifications for human performance research. Human Factor, 15(4):295-310.

Guzdemir O, Ogale AA. (2019) In?uence of spinning temperature and filler content on the properties of melt-spun soy flour/polypropylene fibers. Fibers, 7(10):83-101.

Tascan M, Nohut S. (2016) Melt-spun talc-filled polypropylene fibers and yarns with higher thermal shock resistance. Text Res J., 87(1):31-45.




How to Cite




Materials and Manufacturing Engineering

Most read articles by the same author(s)