EFFECT OF CHITIN SOURCE AND CONTENT ON PROPERTIES OF CHITIN NANOWHISKERS FILLED POLYLACTIC ACID COMPOSITES

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i2.1469

Keywords:

chitin, nanowhiskers, prawn waste, polylactic acid, nanocomposites

Abstract

This study investigates the use of chitin nanowhiskers (CHW) from different chitin sources to develop CHW reinforced polylactic acid (PLA) nanocomposite. Chitin sources used in this study were commercial chitin (CC), fermented chitin (FC) and treated fermented chitin (TFC) whereby FC and TFC were obtained from fermentation of prawn waste. The chitin was then undergoes acid hydrolysis to produce commercial chitin nanowhiskers (CCHW), fermented chitin nanowhiskers (FCHW) and treated fermented chitin nanowhiskers (TFCHW). PLA was chosen due to several advantages such as biodegradability, good mechanical strength and in line with global pressure to improve environmental pollution aspects. Tensile strength for PLA/FCHW, PLA/TFCHW and PLA/CCHW increased with increasing filler content until it reached optimum value at 1 phr, 2 phr and 3 phr, respectively. Young’s modulus for the nanocomposites increased with increasing filler content but elongation at break decreased significantly with increasing filler content for all types of nanocomposites. TGA results indicated that PLA/CHW nanocomposites displayed better thermal stability as compared to pure PLA. The biodegradability and water absorption of nanocomposites increased with increasing filler content.The overall results confirm that PLA nanocomposites from FC are not inferior than PLA nanocomposites from CC and therefore has similar potential to be used in packaging applications.

ABSTRAK: Kajian ini menyelidik penggunaan nanowisker kitin (CHW) dari sumber kitin yang berbeza untuk membangunkan komposit poli(asid laktik) (PLA) bertetulang CHW. Sumber-sumber kitin yang digunakan dalam kajian ini terdiri daripada kitin komersial (CC), kitin ditapai (FC) dan kitin ditapai yang dirawat (TFC) di mana FC dan TFC diperoleh daripada penapaian sisa udang. Kitin kemudiannya menjalani proses hidrolisis asid untuk menghasilkan nanowisker kitin komersial (CCHW), nanowisker kitin ditapai (FCHW) dan nanowisker kitin ditapai yang dirawat (TFCHW). PLA dipilih kerana kelebihannya misalnya kebolehan pereputan-bio, kekuatan mekanikal yang baik dan sesuai dengan tekanan global untuk memperbaiki aspek pencemaran alam sekitar. Kekuatanreganganuntuk PLA/FCHW, PLA/TFCHW dan PLA/CCHW meningkat dengan peningkatan kandungan pengisi sehingga mencapai nilai optimum masing-masing pada 1 phr, 2 phr dan 3 phr. Modulus Young bagi komposit nano meningkat dengan peningkatan kandungan pengisi tetapi ciri pemanjangan takat putus menurun dengan ketara dengan peningkatan kandungan pengisi bagi semua jenis komposit nano. Keputusan TGA menunjukkan bahawa komposit nano PLA/CHW memaparkan kestabilan terma yang lebih baik berbanding dengan PLA tulen. Kadar pereputan-bio dan penyerapan air komposit nano meningkat dengan peningkatan kandungan pengisi. Hasil keseluruhan mengesahkan bahawa komposit nano PLA daripada FC tidak lebih rendah daripada komposit nano PLA dari CC dan berpotensi serupa untuk digunakan dalam aplikasi pembungkusan.

Downloads

Download data is not yet available.

References

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

Mincea M, Negrulescu A, Ostafe V. (2012). Preparation, modification, and applications of chitin nanowhiskers: A review. Reviews on Advanced Materials Science, 30:225–242.

Azizi Samir MAS, Alloin F, Dufresne A. (2005). Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 6:612-626.

Oksman K, Mathew AP, Bondeson D, Kvien I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15):2776–2784. https://doi.org/10.1016/j.compscitech.2006.03.002

Petersson L, Kvien I, Oksman K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11–12):2535–2544. https://doi.org/10.1016/j.compscitech.2006.12.012

Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T. (2010). Review: Current International Research into Cellulose Nanofibres and Nanocomposites. Journal of Material Science, 45:1-33. https://doi.org/10.1007/s10853-009-3874-0

Haafiz MKM, Hassan A, Zakaria Z, Inuwa I, Islam MS, Jawaid M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate polymers, 98(1):139–145. https://doi.org/10.1016/j.carbpol.2013.05.069

Nair KG, Dufresne A. (2003). Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules, 4(3):657–665.

Nishino T, Matsui R, Nakamae K. (1999). Elastic modulus of the crystalline regions of chitin and chitosan. Journal of Polymer Science Part B: Polymer Physics, 37(11):1191–1196. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1191::AID-POLB13>3.0.CO;2-H

Vincent JFV, Wegst UGK. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure and Development, 33:187–199. https://doi.org/10.1016/j.asd.2004.05.006

Luckachan GE, Pillai CKS. (2011). Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19(3):637–676. https://doi.org/10.1007/s10924-011-0317-1

Singh AK, Sharma L, Mallick N, Mala J. (2017). Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology, 29(3):1213–1232. https://doi.org/10.1007/s10811-016-1006-1

Yates MR, Barlow CY. (2013). Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resources, Conservation and Recycling, 78:54–66. https://doi.org/10.1016/j.resconrec.2013.06.010

Gandini A, Lacerda TM. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48:1-39. https://doi.org/10.1016/j.progpolymsci.2014.11.002

Pretula J, Slomkowski S, Penczek S. (2016). Polylactides-Methods of synthesis and characterization. Advanced Drug Deliveries Reviews, 107:3-16. https://doi.org/10.1016/j.addr.2016.05.002

Madhavan Nampoothiri K, Nair NR, John RP. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22):8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Coltelli M, Cinelli P, Gigante V, Aliotta L, Morganti P, Panariello L, Lazzeri A. (2019). Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. International Journal of Molecular Sciences, 20(3):504-523. https://doi.org/10.3390/ijms20030504

Rizvi R, Cochrane B, Naguib H, Lee, P.C. (2011). Fabrication and characterization of melt-blended polylactide-chitin composites and their foams. Journal of Cellular Plastics, 47:283. https://doi.org/10.1177/0021955X11402549

Zeng, J.B., He, Y.S., Li, S.L. and Wang, Y.Z., (2012). Chitin whiskers: An overview. Biomacromolecules, 13(1):1–11. https://doi.org/10.1021/bm201564a

Zhang, Q., Wei, S., Huang, J., Feng, J., & Chang, P. R. (2014). Effect of surface acetylated-chitin nanocrystals on structure and mechanical properties of poly (lactic acid). Journal of Applied Polymer Science, 131(2):2-9. https://doi.org/10.1002/app.39809

Singh S, Maspoch ML, Oksman K. (2019). Crystallization of triethyl-citrate-plasticized poly (lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 136(36): 47936. https://doi.org/10.1002/app.47936

Liu, W., Zhu, L., Ma, Y., Ai, L., Wen, W., Zhou, C. and Luo, B. (2019). Well-ordered chitin whiskers layer with high stability on the surface of poly (D,L-lactide) film for enhancing mechanical and osteogenic properties. Carbohydrate Polymers, 212:277-288. https://doi.org/10.1016/j.carbpol.2019.02.060

Liu, H., Liu, W., Luo, B., Wen, W., Liu, M., Wang, X. and Zhou, C. (2016). Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical propertiesand cytocompatibility, Carbohydrate Polymers, 147:216-225. https://doi.org/10.1016/j.carbpol.2016.03.096

Coltelli, M., Aliotta, L., Vannozzi, A., Morganti, P., Panariello, L., Danti, S., Neri, S., Fernandez-Avila, C., Fusco, A., Donnarumma G, Lazzeri A. (2020). Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CNs), Journal of Functional Biomaterials, 11(2):21-43. https://doi.org/10.3390/jfb11020021

Zakaria Z, Hall GM, and Shama G. (1998). Lactic Acid Fermentation of Scampi Waste in a Rotating Horizontal Bioreactor for Chitin Recovery, Process Biochemistry, 33:1-6. https://doi.org/10.1016/S0032-9592(97)00069-1

Zulkeple NM, Zakaria Z, Hamdan S, Abdul Manaf MS. (2011). Fermentation of Prawn Waste by using Effective Microorganism (EM) for Protein Production. Journal of Fundamental Sciences, 7(2):108-112.

Chuayjuljit S, Su-Uthai S, Tunwattanaseree C, Charuchinda S. (2009). Preparation of Microcrystalline Cellulose from Waste-Cotton Fabric for Biodegradability Enhancement of Natural Rubber Sheets. Journal of Reinforced Plastics and Composites, 28:1245–1254. https://doi.org/Doi 10.1177/0731684408089129

Lavall RL, Assis OBG, Campana-Filho SP. (2007). Beta-chitin from the pens of Loligo sp.: extraction and characterization. Bioresource Technology, 98(13):2465–2572. https://doi.org/10.1016/j.biortech.2006.09.002

Pereira AGB, Muniz EC, Hsieh YL. (2014). Chitosan-sheath and chitin-core nanowhiskers. Carbohydrate polymers, 107:158–166. https://doi.org/10.1016/j.carbpol.2014.02.046

Cárdenas G, Cabrera G, Taboada E, Miranda SP (2004). Chitin characterization by SEM, FTIR, XRD and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4):1876–1885. https://doi.org/10.1002/app.20647

Wang Y, Cao X, Zhang L. (2006). Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular bioscience, 6(7):524–531. https://doi.org/10.1002/mabi.200600034

Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z. (2015). Effect of Microcrystalline Cellulose on Biodegradability, Tensile and Morphological Properties of Montmorillonite Reinforced Polylactic Acid Nanocomposites. Fibers and Polymers, 16 (10):2284–2293. https://doi.org/10.1007/s12221-015-5507-3

Pei A, Zhou Q, Berglund LA. (2010). Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)–Crystallization and mechanical property effects. Composites Science and Technology, 70(5):815-821. https://doi.org/10.1016/j.compscitech.2010.01.018

Zakir KM, Ifty H, Andrew A, Rudd CD. (2012). Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). Journal of Materials Science, 47(6):2675–2686. https://doi.org/10.1007/s10853-011-6093-4

Hong J, Kim DS. (2013). Preparation and physical properties of polylactide/cellulose nanowhisker/nanoclay composites. Polymer Composites, 34(2):293–298. https://doi.org/10.1002/pc.22413

Haafiz MKM, Hassan A, Khalil H, Fazita M, Islam MS, Inuwa I, Marliana M, Hussin M. (2016). Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. International Journal of Biological Macromolecules, 85:370–378. https://doi.org/10.1016/j.ijbiomac.2016.01.004

Bikiaris D. (2010). Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites. Materials, 3(4):2884-2946.

Dufresne A, Dupeyre D, Paillet M. (2002). Lignocellulosic flour-reinforced poly(hydroxybutyrate-co-valerate) composites. Journal of Applied Polymer Science, 87:1302–1315. https://doi.org/10.1002/app.11546

Lim JW, Hassan A, Rahmat AR, Wahit MU. (2006). Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly (ethylene-co-octene). Polymer international, 55(2):204-215. https://doi.org/10.1002/pi.1942

Majeed K, Hassan A, Bakar AA, Jawaid M. (2016). Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. Journal of Thermoplastic Composite Materials, 29(7):1003-1019.

Ray SS, Okamoto M. (2003). Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromolecular Rapid Communications, 24(14):815-840.

Cerruti P, Ambrogi V, Postiglione A, Rychly? J, Matisová-Rychlá L, Carfagna C. (2008). Morphological and thermal properties of cellulose?montmorillonite nanocomposites. Biomacromolecules, 9(11):3004-3013. https://doi.org/10.1021/bm8002946

Delhom CD, White-Ghoorahoo LA, Pang SS. (2010). Development and characterization of cellulose/clay nanocomposites. Composites Part B: Engineering, 41(6):475-481.

Karamanlioglu M, Preziosi R, Robson GD. (2017). Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): A review. Polymer Degradation and stability, 137:122-130.

Elsawy MA, Kim KH, Park JW, Deep A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews. 79:1346-1352, https://doi.org/10.1016/j.rser.2017.05.143

Shogren R, Doane W, Garlotta D, Lawton J, Willett J. (2003). Biodegradation of starch/polylactic acid/poly (hydroxyester-ether) composite bars in soil. Polymer Degradation and Stability, 79:405–411.

Rosdi N, Zakaria Z. (2016). Biodegradability Properties on Chitin/Polylactic Acid Composite Films. eProceedings Chemistry. Universiti Teknologi Malaysia. 1:48-52.

Downloads

Published

2020-07-04

How to Cite

Mohd Asri, S. E. A., Zakaria, Z., Hassan, A., & Mohamad Kassim, M. H. (2020). EFFECT OF CHITIN SOURCE AND CONTENT ON PROPERTIES OF CHITIN NANOWHISKERS FILLED POLYLACTIC ACID COMPOSITES. IIUM Engineering Journal, 21(2), 239 - 255. https://doi.org/10.31436/iiumej.v21i2.1469

Issue

Section

Materials and Manufacturing Engineering