EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF SOLVENT CAST POLY(LACTIC ACID) THIN FILM BLENDS

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i2.1119

Keywords:

PLA, PPC, Curcumin, tensile and FEA

Abstract

A combined experimental and finite element analysis () investigation was performed to study the effect of incorporating poly(propylene carbonate)(PPC) and curcumin on the mechanical properties of poly(lactic acid) (PLA). In addition, the chemical interaction and morphological changes brought upon by each subsequent additive were also observed. The addition of PPC at 30 wt% into PLA causes a decrease in strength and modulus by 51% and 68% respectively whilst inducing higher elongation by 74%.  The resultant decrease in strength and modulus of the PLA/PPC blend was recovered by adding a low weight percentage (1 wt%) of curcumin. The images of the fractured surfaces via scanning electron microscope () revealed the brittle-ductile-brittle progression of PLA due to the addition of PPC and curcumin which corroborates the findings from the tensile test. Fourier-transform infrared spectroscopy () revealed that the addition of PPC by 30 wt % resulted in chemical interaction between the carbonyl groups of PLA and PPC  as the C=O peak of PLA slightly shifted to a lower wavenumber. The presence of curcumin peaks however was found to be difficult to be identified in the PLA/PPC/curcumin blend. The simulated results for the stress-strain profile using FEA agreed well with the experimental tensile test profile with a relatively low percentage error of less than 6%. Therefore, it was concluded that for these compositions, the developed model can be used for further simulation works to design biomedical devices.

ABSTRAK: Gabungan penyelidikan secara eksperimen dan analisis unsur terhad (FEA) telah dijalankan bagi mengkaji kesan campuran poli (propilen karbonat) (PPC) dan kurkumin pada sifat mekanikal poli (asid laktik) (PLA). Tambahan, interaksi kimia dan perubahan morfologi pada setiap penambahan berikutnya turut diperhatikan. Penambahan PPC pada 30 wt% ke dalam PLA menyebabkan pengurangan pada tenaga dan modulus sebanyak 51% dan 68% masing-masing sementara menyebabkan kenaikan pemanjangan sebanyak 74%. Hasil pengurangan pada tenaga dan modulus campuran PLA/PPC diseimbangkan dengan mencampurkan peratus kurkumin kurang berat (1 wt%). Melalui mikroskop imbasan elektron (SEM), didapati imej permukaan retak menunjukkan PLA berturutan rapuh-mulur-rapuh disebabkan penambahan PPC dan kurkumin di mana ianya menyokong dapatan kajian ini melalui ujian kekuatan tegangan. Spektroskopi Inframerah Jelmaan Fourier (FTIR) menunjukkan dengan penambahan PPC sebanyak 30 wt %, interaksi kimia antara kumpulan karbonil PLA dan PPC pada puncak C=O PLA telah berubah sedikit kepada nombor gelombang lebih kecil. Walau bagaimanapun, kehadiran puncak kurkumin adalah sukar dikenal pasti dalam campuran PLA/PPC/kurkumin. Dapatan hasil simulasi pada profil strain-tekanan menggunakan FEA adalah sama dengan ujian kekuatan tegangan dengan peratus ralat yang agak rendah iaitu kurang daripada 6%. Oleh itu, komposisi model yang dibangunkan ini adalah sesuai bagi meneruskan kerja-kerja simulasi iaitu bagi mereka bentuk alat biomedikal. 

 

 

 

 

 

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

SuPing L, Darrel U. (2009) Degradability of Polymers for Implantable Biomedical Devices. Int J Mol Sci., 9 (10): 4033-4065.

Kaojin W, Satu S, Julian XXZ. (2017) A Mini Review: Shape Memory Polymers for Biomedical Applications. Front Chem Sci Eng., 11(2): 143-153.

Rajendra PP, Sunil UT, Suresh US, Jalinder TT, Abraham JD. (2014) Biomedical Applications of Poly(Lactic Acid). Recent Pat Regen Med., 1(4): 240-251.

Kotiba H, Mosab K, Yang HW, Fawaz D, Young GK. (2015) Properties and Medical Applications of Polylactic Acid: A Review. Polym Lett., 9(5):435–455.

Broz M, David LV, Newell RW. (2003) Structure and Mechanical Properties of Poly(D,L-lactic acid)/Poly(-caprolactone) Blends. Biomat., 24:4181-4190.

Erin H, Margaret F. (2014) Increasing Surface Hydrophilicity in Poly(Lactic Acid) Electrospun Fibers by Addition of PLA-β-PEG Co-Polymers. J Eng Fiber Fabr., 9(2):153-164.

Feng-Jiao L, Shui-Dong Z, Ji-Zhao L, Jun-Zhe W. (2015) Effect of Polyethylene Glycol on the Crystallization and Impact Properties of Polylactide-based Blends. Polym. Adv. Technol., 26(5):465-475.

Yanping L, Hanghang W, Zhen W, Qian L, Nan T. (2018) Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10 (10):1178-1191

Ahmed Mohamed E. (2014) The Effect of Additives Interaction on the Miscibility and Crystal Structure of Two Immiscible Biodegradable Polymers. Polimeros, 24(1):9-16.

Yao M, Deng H, Mai F, Wang K, Zhang Q, Chen F, Fu Q. (2011) Modification of Poly(lactic acid)/Poly(Propylene Carbonate) Blends Through Melt Compounding with Maleic Anhydride. Polym Lett., 5(11):937-949.

Sheng-Xue Q, Cui-Xiang Y, Xue-Yang C, Hai-Ping Z, Lifen Z. (2018) Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on In Situ Compatibilization by Dicumyl Peroxide. Chinese J Polym Sci., 36:783-790.

Mihir S, Ananda Kumar R, Vipul D, Richard AG, Stephen PM. (1997). Biodegradable Polymer Blends of Poly(lactic acid) and Poly(ethylene glycol). J Appl Polym Sci., 66:1495-1505.

Wannapa C, Varaporn T, Jean-Francois P, Pamela P. (2012) Effect of Poly(Vinyl Acetate) on Mechanical Properties and Characteristics of Poly(Lactic Acid)/Natural Rubber Blends. J Polym Environ., 21:450-460.

Baherah B, Yanwei M, Fariba D (2015). Antimicrobial Packaging for Biomedical Applications from a Biodegradable Polymer in Asia Pacific Confederation of Chemical Engineering Congress 2015; Melbourne, Australia.

Youhua T, Xianhong W, Xiaojiang Z, Ji L, Fosong W. (2006) Crosslinkable Poly(propylene carbonate): High-Yield Synthesis and Performance Improvement. J Polym Sci., 44:5329-5336.

Iman M, Ali F, Hesham B, Sean Ryan D, Ali Negahi S, Fariba D. (2016) Biomedical Applications of Biodegradable Polyesters. Polymers, 8(1):20-52.

Dalbir S, Sharma S, Davinder Pal Singh O, Idress Ahmed W. (2010) Effect of Extraction Parameters on Curcumin Yield from Turmeric. J Food Sci. Technol., 47(3):300-304.

David E R, Biotechnology 2, Global Prospects, Florida: CRC Press, 2011.

Bharat A, Bokyung S. (2009) Pharmacological Basis for the Role of Curcumin in Chronic Diseases: An Age-old Spice with Modern Targets. Trends Pharmacol Sci., 30(2):85-94.

Sahdeo P, Amit Tyagi K, Bharat A. (2014) Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice. Cancer Res. Treat., 46(1): 2-18.

Nithya R, Tamil Selvan N, Sheeja R. (2015) Preparation and Characterization of Electrospun Curcumin Loaded Poly(2-hydroxyethyl methacrylate) Nanofiber-a Biomaterial for Multidrug Resistant Organisms. J Biomed Mater Res., 103(1):16-24.

Xia F, Chun Z, Dong-Bu L, Jun Y, Hua-Ping L. (2013) The Clinical Applications of Curcumin: Current State and the Future. Curr Pharm Des., 19:11-13.

Xiao-Zhu S, Gareth R W, Xiao-xiao H, Li-Min Z. (2013) Electrospun Curcumin-loaded Fibers with Potential Biomedical Applications. Carbo Polym., 94:147-153.

Thuy Thi T N, Chiranjit G, Seong Gu H, Tran Dai L, Jun Seo P. (2013) Characteristics of Curcumin –loaded Poly(lactic) Nanofibers for Wound Healing. J Mater Sci, 48:7125-7133

Bhaarathi D, Saraswathy N, Ramasamy M, Ponnusamy S, Palanisamy V, Sukumar V, Venugopal R. (2013) Electrospinning of Curcumin Loaded Chitosan/Poly (lactic acid) Nanofilm and Evaluation of its Medicinal Characteristics. Front Mat Sci., 7(4):350-361.

Heni R, Yulia Lie Y, Annisa R, Noboyuki M. (2016) Curcumin-loaded PLA Nanoparticles: Formulation and Physical Evaluation. Sci Pharma., 84(1):191-202.

Li-mei J, Yi-chun Z, Yongli H. (2010) Elastic-plastic Properties of Thin Film on Elastic-plastic Substrates Characterized by Nanoindentation Test. T Nonferr Metal Soc., 20(12):2345-2349.

Senthil E, Ashley Kelley J, Jorgen B, Virginia L G (2011). Material Modeling of Polylactide, in Simulia Customer Conference, Barcelona, Spain, 2011.

Harpen L, Ahmed I, Felfel RM, Qian C. (2012) Finite Element Modelling of the Flexural Performance of Resorbable Phosphate Glass Fibre Reinforced PLA Composite Bone Plates. J Mech Behav Biomed Mater., 15:13-23.

Anna B, Susana PF, Jose-Ramon S, Wang W, Peter EM. (2015) Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Cardio Eng Tech., 6(4):519-532.

Andrea Costa V, Antonio T. M, Rui Miranda G, Volnei T. (2011) Material Model Proposal for Biodegradable Materials. Procedia Eng., 10:1597-1602.

Joao Silve S, James E M, Kumbakonan RR. (2008) Constitutive Framework for Biodegradable Polymers with Applications to Biodegradable Stents. Asaio J., 54(3): 295-301.

Link RE, Garrell MG, Albert S, Edgar LC, Ronald S. (2003) Finite-Element Analysis of Stress Concentration in ASTM D 638 Tension Specimens. J Test Eval., 31(1):1-6.

Mayank N, Anurag D, Misra R K, Harlal Singh M. (2014) Tensile Test Simulation of CFRP Test Specimen Using Finite Elements. Procedia Mat Sci., 5:267-273.

Jonathan T, Jose C, Justin K, Ali PG. (2015). Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives. JOM., 67(5):1183-1193.

Shuwen P, Xiuyan W, Lisong D. (2005) Special Interaction Between Poly (propylene carbonate) and Corn Starch. Polymer Composite, 26:37-41.

Kurniawan Y, Yohanes Aris P, Setyo P, Bruce A W, Hadi Karia P, Titi Candra S. (2015) Infrared and Raman Studies on Polylactide Acid and Polyethylene Glycol-400 Blend. in AIP Conference Proceedings of the Third International Conference on Advanced Materials Science and Technology (ICAMST 2015): 6-7 Oct 2015; Semarang. Edited by Sutikno, Khairurrijal, Heru Susanto, Risa Suryana, Kuwat Triyana and Markusdiantoro, AIP Publishing; pp 0201011-0201016.

Xiaofei M, Jiugao Y, Ning W. (2006) Compatibility Characterization of Poly(lactic acid)/Poly(propylene carbonate) Blends. J Polym Sci Pt B., 44: 94-101.

Rosana Aparecida da S, Mateus Ferreira de S, Daniela O, Evandro B. (2016) Preparation of Curcumin-loaded Nanoparticles and Determination of the Antioxidant Potential of Curcumin after Encapsulation. Polimeros, 26(3):207-214.

Harshal Ashok P, Karde M, Mundle N, Jadhav P. (2014) Phytochemical Evaluation and Curcumin Content Determination of Turmeric Rhizomes Collected From Bhandara District of Maharashtra (India). Med. Chem., 4(8):588-591.

Duong Quang L, Trang M, Thi Thu T N, Thi Ngoan N, Thi Cham B, Nguyen Hai B, Thi Bich H P, Tran Dai L, Jun Seo P. (2012) A Novel Nanofiber Cur-loaded Polylactic Acid Constructed by Electrospinning. Adv Nat Sci-Nanosci., 3:1-5.

Yan C, Jie L, Yanna F, Hongbo W. (2010) Preparation and Characterization of Electrospinning PLA/Curcumin Composite Membranes. Fib Polym., 11(8):1128–1131.

Wei Z, Rongyuan C, Guizhen Z, Haichen Z. (2016) Mechanical, Thermal and Rheological Properties and Morphology of Poly (lactic Acid)/Poly (propylene Carbonate) Blends Prepared by Vane Extruder. Polym Adv Technol,. 27(11): 1430-1437.

Cuixiang Y, Ruirui Z, Haiyue W. (2018) The Mechanical Property of PLA/PPC Blends. Int J Trend Res Dev., 5(2):206-208.

Qirui S, Tizazu M, Manjusri M, Amar M. (2016) Novel Biodegradable Cast Film from Carbon Dioxide Based Copolymer and Poly(Lactic Acid). J Polyms Environ., 24(1):23-36.

Nurdina Abdul K, Mariatti J, Samayamutthirian P. (2009) Effect of Single-Mineral Filler and Hybrid-Mineral Filler Additives on the Properties of Polypropylene Composites. J Vinyl Addit Techn., 15(1):20-28.

Sharifah Imihezri S S, Qairol A A B, Noor Azlina H, Nor Khairusshima MK. (2017) Thermal, Structural and Mechanical Properties of Melt Drawn Curloaded Poly(lactic acid) Fibers. Procedia Eng., 184:544 - 551.

Zhao W, Xiangling L, Min Z, Wei Y, Mingbo Y. (2017). Synthesis of an Efficient Processing Modifier Silica-g-poly (lactic acid)/Poly (propylene carbonate) and its Behavior for Poly (lactic acid)/poly (propylene carbonate) Blends. Ind Eng Chem Res., 56 (49):14704-14715.

Baki H. (2014). The Properties of PLA/Oxidized Soybean Oil Polymer Blends. J Polym Environ., 22(2):200-208.

Yongtao W, Liming K, Sizhuo S, Yuxing D, Zhong G, Zhirui Y, Qigang Z. (2013) Finite Element Analysis on Von Mises Stress Distributions of Si DSP. Mater Sci Semicond Process., 16(1):165-170.

Downloads

Published

2019-12-02

How to Cite

Syed Shaharuddin, S. I., Mukhtar, A. R. ., Mohd. Akhir , N. A. ., Shaffiar, N., & Othman, M. (2019). EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF SOLVENT CAST POLY(LACTIC ACID) THIN FILM BLENDS. IIUM Engineering Journal, 20(2), 197–210. https://doi.org/10.31436/iiumej.v20i2.1119

Issue

Section

Materials and Manufacturing Engineering

Most read articles by the same author(s)