CHARACTERISATION AND PRODUCTION OF POLY (LACTIC ACID)/POLY(ETHYLENE GLYCOL) MICROFIBER VIA MELT DRAWN SPINNING PROCESS

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1364

Keywords:

microfiber, PLA, PEG, melt spinning

Abstract

In this study, melt blended compositions of pure PLA with additions of polyethylene glycol (PEG) up to 30 wt% were prepared. Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA) were used to investigate the properties of PLA/PEG blends, such as structural, thermal, and morphological properties. The results showed that further increments of PEG cause the -OH group of PLA/PEG blends to show a broad peak, indicating that there is hydrogen bonding interaction between PEG and PLA chains. DSC result revealed that the addition of PEG decreases the glass transition temperature from 57 °C to 46 °C and crystallization temperature from 107 °C to 87 °C. Such trends suggest enhanced chain mobility of PLA chains. TGA thermograms showed that further additions of PEG into PLA resulted in a consistent shift to lower temperature and decrease in thermal stability. Optical microscopy (OM) and scanning electron microscopy (SEM) observations of the melt spun PLA/PEG microfibers revealed that the diameter of the microfibers averaged between 15 to 80 microns.

ABSTRAK: Kajian ini menganalisa komposisi adunan lebur PLA asli bersama tambahan polietilena glikol (PEG) sebanyak 30%. Penjelmaan Fourier spektroskopi inframerah (FTIR), kalorimeter pengimbasan pembezaan (DSC) dan analisis termogravimetri (TGA) telah digunakan bagi mengkaji sifat-sifat adunan PLA/PEG, seperti struktur, terma dan sifat-sifat morfologi. Keputusan menunjukkan penambahan PEG seterusnya menyebabkan kumpulan -OH campuran PLA/PEG memberikan puncak yang lebar, ini menunjukkan ada interaksi ikatan hidrogen antara rantaian PEG dan PLA. Keputusan DSC menunjukkan penambahan PEG mengurangkan perubahan gelas dari 57 °C kepada 46 °C dan suhu kristalisasi dari 107 °C kepada 87 °C. Trend ini mencadangkan peningkatan pergerakan rangkaian pada rantaian PLA. Termogram TGA menunjukkan dengan penambahan berterusan PEG ke dalam PLA menghasilkan penurunan konsisten pada suhu dan pengurangan kestabilan haba. Pemerhatian mikroskop optik (OM) dan mikroskopi elektron penskanan (SEM) mikrofiber spun lebur PLA/PEG menunjukkan purata diameter mikrofiber ini antara 15 ke 80 mikron.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Farah TMN, Nadia AA. (2014) Study the mechanical and thermal properties of biodegradable polylactic acid/poly ethylene glycol nanocomposites. International Journal of Application or Innovation in Engineering & Management, 3(1): 459-464.

Weraporn P, Kazunori F, Keiichiro N, Yuji A, Hitomi A, Hideki Y. (2016) The effect of poly (ethylene glycol) as plasticizer in blends of poly (lactic acid) and poly (butylene succinate). Journal of Applied Polymer Science, 133(8): 1-10.

Mariya S, Olya S, Nevena M, Iliya R, George A. (2007) Preparation of PLLA/PEG Nanofibers by Electrospinning and Potential Applications. Journal of Bioactive and Compatible Polymers, 22(1): 62-76.

Gupta AP, Vimal K. (2007) New emerging trends in synthetic biodegradable polymers - Polylactide: A critique. European Polymer Journal, 43(10): 4053-4074.

Ching WL, Chun HY, Yueh SC, Tsung CH, Jia HL and Wen HH. (2008) Manufacturing and Properties of PLA Absorbable Surgical Suture. Textile Research Journal 78(11): 958-965.

Yangling C, Shaobo D, Paul C, Roger R. (2009) Polylactic acid (PLA) synthesis and modifications: A review. Frontiers of Chemistry in China, 4(3): 259-264.

Cynthia DCE, Ricardo JA, Jarbas MR, Roberto FSF and Ricardo GS. (2012) Synthesis and Characterization of Poly(D, L-Lactide-co-Glycolide) Copolymer. Journal of Biomaterials and Nanobiotechnology, 3: 208-225.

Lin X, Bo W, Guang Y and Mario G. (2006) Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. In Biomedical Science, Engineering and Technology. Edited by Prof. Dhanjoo N. Ghista. InTech; pp 248-282.

Buong WC, Nor AI, Wan MZWN, Mohd ZH. (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1): 93-104.

Jong-Whan R, Amar KM, Sher PS, Perry KWG. (2006) Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science, 101(6):,3736-3742.

Muhammad AAS, Wan AWAR, Rohah AM. (2014) Effect of different solvents on the thermal, IR spectroscopy and morphological properties of solution casted PLA / starch films. Malaysian Journal of Fundamental and Applied Sciences, 10(1): 33-36.

Jianming Z, Shiwei W, Yuhui Q, Qian L. (2016) Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid and Polymer Science. 294(11):1779–1787.

Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E. (2003) Aging of poly(lactide)/poly (ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer, 44(19): 5701-5710.

Aswini KM, Smita M, Sanjay KN. (2014) Properties and characterization of biodegradable poly (lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay. J. Thermoplast. Compos. Mater., 29(4): 443-463.

Savitha S, Girija B, Ravichandran K. (2018) Effect of Polyethylene glycol on Mechanical, Thermal, and Morphological Properties of Talc Reinforced Polylactic Acid Composites. Materials Today: Proceedings, 5(1): 1591-1598.

Saddys RL, Bernabe LR, Monica AP, Florence PS. (2012) Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Performance Polymers, 24(4): 254-261.

Feng JL, Shui DZ, Ji ZL, Jun ZW. (2015) Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polymer Advanced Technologies, 26: 465-475.

Yupin P, Yong M, Philippe Z, Suwabun C. (2013) Balancing crystalline and amorphous domains in PLA through star-structured polylactides with dual plasticizer / nucleating agent functionality. Polymer, 54:7058-7070.

Isabelle P, Nicolas M, Yves G. (2006) Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor? Polymer, 47(13): 4676-4682.

Nor AI, Wan MZWN, Maizatulnisa O, Khalina A, Kamarul AH. (2010) Poly (Lactic Acid) (PLA)-reinforced kenaf bast fiber composites: The effect of triacetin. Journal of Reinforced Plastics and Composites, 29(7): 1099-1111.

Gupta VB, Kothari VK. Manufactured Fibre Technology, First Edit. Chapman & Hall, 1997.

Kurniawan Y, Yohanes AP, Setyo P, Bruce AW, Hadi KP, Titi CS. (2016) Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings. 1725, 020101.

Jose-Ramon S, Nerea LR, Alberto LA, Emilio M. (2005) Stereoselective crystallization and specific interactions in polylactides. Macromolecules, 38(20): 8362-8371.

Yong J, Xin-Yao Y, Tao L, Mei-Yun Z, Jin-Huia L, Xing-Jiu H. (2013) PEG aggregation templated porous ZnO nanostructure: Room temperature solution synthesis, pore formation mechanism, and their photoluminescence properties. CrystEngComm., 15(18): 3647-3653.

Decai L, Yang J, Shanshan L, Xiaojing L, Jiyou G, Qifeng C, Yanhua Z. (2018) Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One, 13(3): 1-15.

Mounira M, Mohamed TB, Guilhem Q, Valerie MN. (2015) Biobased additive plasticizing Polylactic acid (PLA). Polimeros, 25(6): 581-590.

Norazlina H, Kamala R, Santhoshini S, Kamal Yusoh. (2015) Effect of Processing Method on Thermal Behavior in PLA/PEG Melt Blending. Advanced Materials Research, 1134: 185-190.

Buong WC, Nor AI, Wan MZWN, Mohd ZH. (2013) Plasticized Poly (lactic acid) with Low Molecular Weight Poly (ethylene glycol): Mechanical,Thermal and Morphology Properties. Journal of Applied Polymer Science, 130(6): 4576-4580.

Yan PS, De YW, Xiu LW, Ling L, Yu ZW. (2011) A method for simultaneously improving the flame retardancy and toughness of PLA. Polymer advanced technologies, 22(12):2 295-2301.

Athanasia AS, Samsul BI. (2017) Plasticization of poly (lactic acid) using different molecular weight of poly ( ethylene glycol ). In Proceedings of the 3rd International Symposium on Applied Chemistry: 23–24 October 2017; Jakarta, Indonesia. Volume 1904. Issue 1.

Giita S, Nor AI, Norhazlin Z, Wan MZWY and Hazimah AH. (2012) Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules. 17(10): 11729–11747.

Melissa GAV, Mariana AS, Lucielen OS, Marisa MB. (2011) Natural-based plasticizers and biopolymer films: A review. European Polymer Journal. 47(3):254–263.

Khayet M. (2015) Melt Spinning. Encyclopedia of Membranes.

Larissa. MB, Erin D, Margaret WF. (2014) Phase separation to create hydrophilic yet non-water soluble PLA/PLA-b-PEG fibers via electrospinning. Journal of Applied Polymer Science, 131(19): 1-7.

Caitlyn MC, Sami MEAA, Reaz C, Shoumya NS, James S, Gregory S, Volkan O, Jeffrey PY. (2019) Melt Spinning of Cellulose Nano fibril/Polylactic Acid (CNF/PLA) Composite Fibers for High Stiffness. Appllied Polymer Material, 1:160-168.

Downloads

Published

2020-01-04

How to Cite

Mohd. Akhir , N. A. ., Othman , M., Buys, Y. F. ., Shaffiar, N., Jimat, D. N., & Syed Shaharuddin, S. I. (2020). CHARACTERISATION AND PRODUCTION OF POLY (LACTIC ACID)/POLY(ETHYLENE GLYCOL) MICROFIBER VIA MELT DRAWN SPINNING PROCESS. IIUM Engineering Journal, 22(1), 201–212. https://doi.org/10.31436/iiumej.v22i1.1364

Issue

Section

Materials and Manufacturing Engineering

Most read articles by the same author(s)