Ozonation of Vegetable Oils and Study on Their Physicochemical and Biological Characteristics
DOI:
https://doi.org/10.31436/iiumej.v26i2.3410Keywords:
Ozonated vegetable oil, Virgin coconut oil, Red Palm Oil, antibacterial activity., Killing rate, CharacterizationAbstract
Free ozone offers significant benefits in biological applications due to its efficacy as a disinfectant, but toxicity and instability are associated with it. Hence, producing ozonated vegetable oil (OVO) has been explored as a potential solution, yielding stable ozonation by-products with medical potential, such as antimicrobial activity. Several studies have explored OVO's characteristics and biological effects, including olive oil, sunflower oil, and canola oil. However, optimizing ozonation conditions is still lacking, with many other types of vegetable oils yet to be studied. This research comprises three phases: i) ozonation of selected oils: red palm oil (RPO), rice bran oil (RBO), peanut oil (PO), and virgin coconut oil (VCO), ii) screening for the most effective OVO against three bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli), and iii) physicochemical testing. Results show increased peroxide and acidity values in most OVO and a decrease in iodine value compared to untreated oil. Ozonated virgin coconut oil (OVCO) exhibits the highest antibacterial activity by showing a zone of inhibition of 11.3 mm and 84.35% killing rate at 30 minutes incubation time, particularly against S. aureus. Further optimization using Design Expert®6.0.8 software identifies the most effective ozonation conditions for OVCO, achieving a peak killing rate of 100% against S. aureus with 360 mins of ozone exposure and ozone flow rates of 1 l/min. Kinetic studies confirm rapid bacterial eradication, with over 90% of S. aureus killed by OVCO within 2 mins. Moreover, OVCO proved to be non-toxic to human foreskin fibroblast (HFF1) cells, maintaining 80% viability even after exposure to 1 mg/ml OVCO treated with ozone for 120 and 240 mins. These findings underscore the promising medical potential of OVCO, particularly in treating skin diseases.
ABSTRAK: Ozon bebas menawarkan manfaat signifikan dalam aplikasi biologi disebabkan keberkesanannya sebagai bahan pembasmi kuman, namun ia turut dikaitkan dengan ketoksikan dan ketidakstabilan. Oleh itu, penghasilan minyak sayuran berozon (OVO) telah diteroka sebagai potensi penyelesaian, menghasilkan hasil sampingan ozonasi yang stabil dengan potensi perubatan seperti aktiviti antimikrob. Beberapa kajian telah meneliti ciri-ciri dan kesan biologi OVO termasuk minyak zaitun, minyak bunga matahari, dan minyak kanola. Namun, proses pengoptimuman keadaan ozonasi masih belum lengkap dan banyak lagi jenis minyak sayuran belum dikaji. Kajian ini terdiri daripada tiga fasa: i) ozonasi minyak terpilih iaitu minyak sawit merah (RPO), minyak dedak padi (RBO), minyak kacang tanah (PO), dan minyak kelapa dara (VCO), ii) saringan keberkesanan OVO terhadap tiga jenis bakteria (Staphilokokus aureus, Basillus subtilis, dan Escherichia coli), dan iii) ujian fisikokimia. Keputusan menunjukkan peningkatan nilai peroksida dan keasidan dalam kebanyakan OVO serta penurunan nilai iodin berbanding minyak yang tidak dirawat. Minyak kelapa dara berozon (OVCO) menunjukkan aktiviti antibakteria tertinggi dengan zon perencatan berdiameter 11.3 mm dan kadar pembunuhan bakteria sebanyak 84.35% dalam masa inkubasi 30 minit, khususnya terhadap S. aureus. Pengoptimuman lanjut menggunakan perisian Design Expert®6.0.8 mengenal pasti keadaan ozonasi paling berkesan bagi OVCO, dengan pencapaian kadar pembunuhan maksimum 100% terhadap S. aureus pada pendedahan ozon selama 360 minit dan kadar aliran ozon 1 l/min. Kajian kinetik mengesahkan penghapusan bakteria yang pantas, dengan lebih 90% S. aureus dibunuh oleh OVCO dalam masa 2 minit. Tambahan, OVCO terbukti tidak toksik terhadap sel fibroblas kulit manusia (HFF1), dengan mengekalkan 80% daya hidup walaupun selepas pendedahan kepada 1 mg/ml OVCO yang dirawat ozon selama 120 dan 240 minit. Penemuan ini menekankan potensi perubatan OVCO, khususnya dalam merawat penyakit kulit.
Downloads
Metrics
References
Tan, C. H., Lee, C. J., Tan, S. N., Poon, D. T. S., Chong, C. Y. E., & Pui, L. P. (2021) Red Palm Oil: A review on processing, health bene?ts and its application in food. Journal of Oleo Science. Retrieved January 20, 2023, from https://doi.org/10.5650/jos.ess21108
Tavassoli-Kafrani, M. H., Foley, P., Kharraz, E., & Curtis, J. M. (2016). Quantification of Nonanal and Oleic Acid Formed during the Ozonolysis of Vegetable Oil Free Fatty Acids or Fatty Acid Methyl Esters. JAOCS, Journal of the American Oil Chemists’ Society, 93(3), 303–310. https://doi.org/10.1007/s11746-015-2780-7
Puxeddu, S., Scano, A., Scorciapino, M. A., Delogu, I., Vascellari, S., Ennas, G., Manzin, A., & Angius, F. (2024). Physico-Chemical Investigation and Antimicrobial Efficacy of Ozonated Oils: The Case Study of Commercial Ozonated Olive and Sunflower Seed Refined Oils. Molecules, 29(3). https://doi.org/10.3390/molecules29030679
Lenart-Boro?, A., Stankiewicz, K., Bulanda, K., Czernecka, N., Heliasz, M., Hunter, W., Ratajewicz, A., Khachatryan, K., & Khachatryan, G. (2024). In Vitro Antibacterial Activity of Ozonated Olive Oil against Bacteria of Various Antimicrobial Resistance Profiles Isolated from Wounds of Companion Animals. International Journal of Molecular Sciences, 25(6). https://doi.org/10.3390/ijms25063557
Guerra-Blanco, P., Chairez, I., Poznyak, T., & Brito-Arias, M. (2021). Kinetic Analysis of Ozonation Degree Effect on the Physicochemical Properties of Ozonated Vegetable Oils. Ozone: Science and Engineering, 43(6), 546–561. https://doi.org/10.1080/01919512.2020.1868972
Semeniuc, C. A., & Mure?an, V. (2023). Spectroscopic, Chromatographic, and Chemometric Techniques Applied in Food Products Characterization. In Separations (Vol. 10, Issue 1). MDPI. https://doi.org/10.3390/separations10010055
Colombo, M., Ceci, M., Felisa, E., Poggio, C., & Pietrocola, G. (2018). Cytotoxicity evaluation of a new ozonized olive oil. European journal of dentistry, 12(4), 585–589. https://doi.org/10.4103/ejd.ejd_422_18
Ugazio, E., Tullio, V., Binello, A., Tagliapietra, S., & Dosio, F. (2020). Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. In Molecules (Vol. 25, Issue 2). MDPI AG. https://doi.org/10.3390/molecules25020334
Absalome, M. A., Massara, C. C., Alexandre, A. A., Gervais, K., Chantal, G. G. A., Ferdinand, D., Rhedoor, A. J., Coulibaly, I., George, T. G., Brigitte, T., Marion, M., & Jean-Paul, C. (2020). Biochemical properties, nutritional values, health benefits and sustainability of palm oil. In Biochimie (Vol. 178, pp. 81–95). Elsevier B.V. https://doi.org/10.1016/j.biochi.2020.09.019
Salsabila, N., Moulydia, F., & Bismo, S. (2018). Formulation of oleozon withPhaleria macrocarpa and Cinnamomum burmanii extract for diabetic wound treatment. IOP Conference Series: Materials Science and Engineering 334, 012069. doi:10.1088/1757-899x/334/1/012069
Silva, V., Peirone, C., Amaral, J. S., Capita, R., Alonso-Calleja, C., Marques-Magallanes, J. Poeta, P. (2020). High E?cacy of OVO on the Removal of Bio?lms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules, 25(16), 3601. doi:10.3390/molecules25163601
Siddiqua, T., Uddin, I., Hasan, M. R., & Begum, R. (2024). Effect of heating and Re-heating on physico-chemical properties of rice bran oil and soybean oil. Journal of Agriculture and Food Research, 15. https://doi.org/10.1016/j.jafr.2024.100979
Petani, L., Jung, A. M., Frietsch Musulin, R. R., Sturm, G., Kaster, A. K., & Pylatiuk, C. (2024). Exploring the Antibacterial Effects of Ozonated Oils in Medicine: A Study on Escherichia coli Inhibition. Ozone: Science and Engineering, 46(2), 174–181. https://doi.org/10.1080/01919512.2023.2233746
Travagli, V., Zanardi, I., Valacchi, G., & Bocci, V. (2010). Ozone and OVO in Skin Diseases: A Review. Mediators of In?ammation, 2010, 1–9. doi:10.1155/2010/610418
Enjarlis, Handayani, S., & Anwar, Y. (2018). Synthesis and Characterization of Cocozone Oil as Skin Care Ingredient. Retrieved April 21, 2022, from doi:10.14419/ijet.v7i3.32.18415
Amri, Z., Ben Hamida, S., Dbeibia, A., Ghorbel, A., Mahdhi, A., Znati, M., … Hammami, M. (2020). Physico-chemical Characterization and Antibacterial Activity of Ozonated Pomegranate Seeds Oil. Ozone: Science & Engineering, 1–8. https://doi.org/10.1080/01919512.2020.1735993
Slavinskien?, G. E., Grigonis, A., Ivaškien?, M., Sinkevi?ien? E, I., Andrulevi?i, V., Ut? E, ¯, Ivanauskas, L., Juodžent?, D., Ramanauskien?, K., Daunoras, G., & Kriau?eli, D. L. (2024). A Comparative Study of the Chemical Properties and Antibacterial Activity of Four Different Ozonated Oils for Veterinary Purposes. https://doi.org/10.3390/vetsci
Widianingrum, D. C., Noviandi, C. T., & Salasia, S. I. O. (2019). Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon, 5(10), e02612. https://doi.org/10.1016/j.heliyon.2019.e02612
Arif Malik, M. (2023.). INTRODUCTION TO ORGANIC AND BIOCHEMISTRY. https://LibreTexts.org
Balea, A., Ciotl?u?, I., Pojar-Fene?an, M., & Carpa, R. (2023). Comparative Chemical And Antimicrobial Characterization Of Non-Ozonated And Ozonated Vegetable Oils. Studia Universitatis Babes-Bolyai Chemia, 2023(1), 285–301. https://doi.org/10.24193/subbchem.2023.1.21
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 IIUM Press

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2023/STG04/UIAM/02/3