Effect of Incorporating Cellulose Nanofibers and Lemongrass Essential Oil in Polyvinyl Alcohol-Polyethylene Glycol/Glycerin Hydrogel for Wound Dressing

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.3240

Keywords:

Polyvinyl alcohol, Polyethylene glycol, Glycerin, Cellulose nanofibers, Lemongrass essential oil

Abstract

Hydrogels attract increased interest as wound dressings due to their biomimetic properties, creating a moist environment conducive to natural wound healing. In this study, a PVA-PEG/gly-CNF-LG hydrogel incorporating cellulose nanofibers (CNF) and lemongrass essential oil (LG) into the polyvinyl alcohol-polyethylene glycol/glycerin (PVA-PEG/gly) hydrogel via the freeze-thaw method was developed. The addition of CNFs and LG aimed to improve the physicochemical and antibacterial aspects of the hydrogel. Optimal hydrogel composition, determined through response surface methodology (RSM) and central composite design (CCD), consisted of 3.5% (w/v) CNFs and 3% (v/v) LG concentrations, resulting in an optimal moisture retention capability (MRC) of 37.69 ± 0.54%. The optimized PVA-PEG/gly-CNF-LG demonstrated impressive characteristics: a swelling capacity of 176.89 ± 1.56%, a gel fraction of 78.89 ± 0.42%, and a porosity of 47.51 ± 0.53%. FESEM images revealed the relatively porous nature of PVA-PEG/gly-CNF-LG hydrogels. Furthermore, the hydrogel exhibited excellent resistance against S. aureus and B. subtilis bacteria, along with notable tensile properties of 1.44 MPa. These findings underscore the promising attributes of the PVA-PEG/gly-CNF-LG hydrogel, positioning it as a versatile and effective wound-healing dressing with significant antimicrobial properties.

ABSTRAK: Hidrogel mendapat perhatian ramai sebagai pembalut luka di sebabkan oleh ciri-ciri biomimik, di mana menghasilkan persekitaran lembab yang baik bagi penyembuhan luka secara semula jadi. Kajian ini, mencadangkan hidrogel PVA-PEG/gly-CNF-LG yang mengandungi selulosa nanofiber (CNF) dan minyak pati serai (LG) dalam hidrogel polivenil alkohol-polietilin glikol/gliserin (PVA-PEG/gly) melalui kaedah beku-cair. Penambahan CNFs dan LG diperlukan bagi memperbaiki aspek fisiokimia dan antibakterial hidrogel. Komposisi optimal hidrogel, dibentuk melalui kaedah respons permukaan (RSM) dan reka bentuk komposit pusat (CCD), mengandungi 3.5% (w/v) CNFs dan 3% (v/v) kepekatan LG, menghasilkan kemampuan retensi kelembapan optimal (MRC) sebanyak 37.69 ± 0.54%. Kadar optimum PVA-PEG/gly-CNF-LG menunjukkan ciri-ciri yang menarik: iaitu kapasiti pembengkakan sebanyak 176.89 ± 1.56%, pecahan gel sebanyak 78.89 ± 0.42%, dan keliangan 47.51 ± 0.53%. Imej FESEM menunjukkan sifat keliangan semula jadi hidrogel PVA-PEG/gly-CNF-LG. Tambahan, hidrogel memiliki rintangan tinggi terhadap bakteria S. aureus dan B. subtilis, sejajar dengan ciri-ciri ketara tegangan 1.44 MPa. Dapatan kajian ini penting bagi ciri-ciri hidrogel yang berpotensi besar seperti PVA-PEG/gly-CNF-LG, menjadikannya serba guna dan berkesan sebagai balutan penyembuhan luka dengan ciri-ciri antimikrob yang ketara.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Lin SP, Lo KY, Tseng TN, Liu JM, Shih TY, Cheng KC (2019) Evaluation of PVA/dextran/chitosan hydrogel for wound dressing. Cellular Polymers 38:15–30 DOI: https://doi.org/10.1177/0262489319839211

Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM (2018) PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization. Pharm Dev Technol 23:751–760 DOI: https://doi.org/10.1080/10837450.2017.1295067

Li Y, Zhu C, Fan D, Fu R, Ma P, Duan Z, Li X, Lei H, Chi L (2019) A Bi-Layer PVA/CMC/PEG Hydrogel with Gradually Changing Pore Sizes for Wound Dressing. Macromol Biosci. https://doi.org/10.1002/mabi.201800424 DOI: https://doi.org/10.1002/mabi.201800424

Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241 DOI: https://doi.org/10.1080/09205063.2017.1390383

Butylina S, Geng S, Laatikainen K, Oksman K (2020) Cellulose Nanocomposite Hydrogels: From Formulation to Material Properties. Front Chem. https://doi.org/10.3389/fchem.2020.00655 DOI: https://doi.org/10.3389/fchem.2020.00655

Altaf F, Niazi MBK, Jahan Z, Ahmad T, Akram MA, safdar A, Butt MS, Noor T, Sher F (2021) Synthesis and Characterization of PVA/Starch Hydrogel Membranes Incorporating Essential Oils Aimed to be Used in Wound Dressing Applications. J Polym Environ 29:156–174 DOI: https://doi.org/10.1007/s10924-020-01866-w

Rahmi D, Paramadina S, Anjelika M, Widjajanti R (2020) Optimized swelling properties of hydrogels based on poly(vinyl alcohol)-carrageenan. AIP Conf Proc. https://doi.org/10.1063/5.0001098 DOI: https://doi.org/10.1063/5.0001098

Cui L, Tong W, Zhou H, Yan C, Chen J, Xiong D (2021) PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties. J Mater Sci 56:3935–3946 DOI: https://doi.org/10.1007/s10853-020-05467-9

Chen K, Liu J, Yang X, Zhang D (2017) Preparation, optimization and property of PVA-HA/PAA composite hydrogel. Materials Science and Engineering C 78:520–529 DOI: https://doi.org/10.1016/j.msec.2017.04.117

Carating CAM, Rosales RNM, Bongao HC, Magdaluyo ER (2019) Polyvinyl alcohol hydrogel reinforcement of cellulose and silica nanoparticles for wound healing application. In: Key Eng Mater. Trans Tech Publications Ltd, pp 23–28 DOI: https://doi.org/10.4028/www.scientific.net/KEM.821.23

Butylina S, Geng S, Oksman K (2016) Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. Eur Polym J 81:386–396 DOI: https://doi.org/10.1016/j.eurpolymj.2016.06.028

Abu Ghalia M, Dahman Y (2015) Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release. Journal of Polymer Research. https://doi.org/10.1007/s10965-015-0861-9 DOI: https://doi.org/10.1007/s10965-015-0861-9

Bialik-Was K, Pluta K, Malina D, Barczewski M, Malarz K, Mrozek-Wilczkiewicz A (2021) The effect of glycerin content in sodium alginate/poly(Vinyl alcohol)-based hydrogels for wound dressing application. Int J Mol Sci. https://doi.org/10.3390/ijms222112022 DOI: https://doi.org/10.3390/ijms222112022

Ali MASS, Jimat DN, Nawawi WMFW, Sulaiman S (2022) Antibacterial, Mechanical and Thermal Properties of PVA/Starch Composite Film Reinforced with Cellulose Nanofiber of Sugarcane Bagasse. Arab J Sci Eng 47:5747–5754 DOI: https://doi.org/10.1007/s13369-021-05336-w

Gea S, Indra, Muis Y, Panindia N, Hutapea YA (2019) Preparation of polyvinyl alcohol/cellulose nano fiber nanocomposite isolated from empty oil palm fruit bunches. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/553/1/012041 DOI: https://doi.org/10.1088/1757-899X/553/1/012041

Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70 DOI: https://doi.org/10.1016/j.carbpol.2018.04.085

Naik MI, Fomda BA, Jaykumar E, Bhat JA (2010) Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pac J Trop Med 3:535–538 DOI: https://doi.org/10.1016/S1995-7645(10)60129-0

Fatunmibi OO, Njoku IS, Asekun OT, Ogah JO (2023) Chemical composition, antioxidant and antimicrobial Activity of the essential oil from the leaves of Cymbopogon citratus. DOI: https://doi.org/10.58985/jpam.2023.v01i01.04

Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS (2011) Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J Adv Pharm Technol Res 2:3–8 DOI: https://doi.org/10.4103/2231-4040.79796

Entezam M, Daneshian H, Nasirizadeh N, Khonakdar HA, Jafari SH (2017) Hybrid Hydrogels Based on Poly(vinyl alcohol) (PVA)/Agar/Poly(ethylene glycol) (PEG) Prepared by High Energy Electron Beam Irradiation: Investigation of Physico-Mechanical and Rheological Properties. Macromol Mater Eng. https://doi.org/10.1002/mame.201600397 DOI: https://doi.org/10.1002/mame.201600397

Figueroa-Pizano MD, Vélaz I, Martínez-Barbosa ME (2019) A freeze-thawing method to prepare chitosan-poly(Vinyl alcohol) hydrogels without crosslinking agents and diflunisal release studies. Journal of Visualized Experiments. https://doi.org/10.3791/59636 DOI: https://doi.org/10.3791/59636

Asem M, Noraini Jimat D, Huda Syazwani Jafri N, Mohd Fazli Wan Nawawi W, Fadhillah Mohamed Azmin N, Firdaus Abd Wahab M (2023) Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication. Journal of King Saud University - Engineering Sciences 35:24–31 DOI: https://doi.org/10.1016/j.jksues.2021.03.003

Douard L, Bras J, Encinas T, Belgacem MN (2021) Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117136 DOI: https://doi.org/10.1016/j.carbpol.2020.117136

Rezvanian M, Ahmad N, Mohd Amin MCI, Ng SF (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol 97:131–140 DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.079

Thakur M, Sharma A, Ahlawat V, Bhattacharya M, Goswami S (2020) Process optimization for the production of cellulose nanocrystals from rice straw derived ?-cellulose. Mater Sci Energy Technol 3:328–334 DOI: https://doi.org/10.1016/j.mset.2019.12.005

Bacha EG (2022) Response Surface Methodology Modeling, Experimental Validation, and Optimization of Acid Hydrolysis Process Parameters for Nanocellulose Extraction. S Afr J Chem Eng 40:176–185 DOI: https://doi.org/10.1016/j.sajce.2022.03.003

Alven S, Nqoro X, Aderibigbe BA (2020) Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel) 12:1–25 DOI: https://doi.org/10.3390/polym12102286

Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. Journal of Polymer Research. https://doi.org/10.1007/s10965-019-1874-6 DOI: https://doi.org/10.1007/s10965-019-1874-6

Singh BR, Singh V, Singh RK (2016) Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food originEpidemiology-of-emergence-of-antimicrobial-drugs-resistance-in-bacteria-of-veterinary-clinical-importance View project Epidemiology of emergence of antimicrobial drugs resistance in bacteria of veterinary clinical importance View project.

Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8:5154–5193 DOI: https://doi.org/10.3390/ma8085154

Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S (2020) Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers (Basel) 12:1–60 DOI: https://doi.org/10.3390/polym12112702

Naeimi M, Tajedin R, Farahmandfar F, Naeimi M, Monajjemi M (2020) Preparation and characterization of vancomycin-loaded chitosan/PVA/PEG hydrogels for wound dressing. Mater Res Express. https://doi.org/10.1088/2053-1591/abb154 DOI: https://doi.org/10.1088/2053-1591/abb154

Shen R, Xue S, Xu Y, Liu Q, Feng Z, Ren H, Zhai H, Kong F (2020) Research progress and development demand of nanocellulose reinforced polymer composites. Polymers (Basel). https://doi.org/10.3390/POLYM12092113 DOI: https://doi.org/10.3390/polym12092113

Nascimento DM, Nunes YL, Figueirêdo MCB, De Azeredo HMC, Aouada FA, Feitosa JPA, Rosa MF, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chemistry 20:2428–2448 DOI: https://doi.org/10.1039/C8GC00205C

Shahzadi MP (2017) Lemon Grass (Cymbopogon citratus). Grasses - Benefits, Diversities and Functional Roles. https://doi.org/10.5772/intechopen.69518 DOI: https://doi.org/10.5772/intechopen.69518

Chamkouri H (2021) A Review of Hydrogels, Their Properties and Applications in Medicine. Am J Biomed Sci Res 11:485–493 DOI: https://doi.org/10.34297/AJBSR.2021.11.001682

Kumar Soni R, M Kewatkar S, Jain V, Singh Saluja M (2023) A Review of Hydrogels, with its Properties and Applications in Medicine. Journal of Biomedical and Pharmaceutical Research 12:20–33 DOI: https://doi.org/10.32553/jbpr.v12i2.970

Rolim WR, Pieretti JC, Renó DLS, Lima BA, Nascimento MHM, Ambrosio FN, Lombello CB, Brocchi M, De Souza ACS, Seabra AB (2019) Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b19021 DOI: https://doi.org/10.1021/acsami.8b19021

Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME (2019) A review on nanocomposite hydrogels and their biomedical applications. IEEE Journal of Selected Topics in Quantum Electronics 26:154–174 DOI: https://doi.org/10.1515/secm-2017-0161

Saleem M, Saeed MT (2020) Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J King Saud Univ Sci 32:805–810 DOI: https://doi.org/10.1016/j.jksus.2019.02.013

Yang W, Xu F, Ma X, et al (2021) Highly-toughened PVA/nanocellulose hydrogels with anti-oxidative and antibacterial properties triggered by lignin-Ag nanoparticles. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2021.112385 DOI: https://doi.org/10.1016/j.msec.2021.112385

de Lima GG, Ferreira BD, Matos M, Pereira BL, Nugent MJD, Hansel FA, Magalhães WLE (2020) Effect of cellulose size-concentration on the structure of polyvinyl alcohol hydrogels. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116612 DOI: https://doi.org/10.1016/j.carbpol.2020.116612

Shetty SB, Mahin-Syed-Ismail P, Varghese S, Thomas-George B, Kandathil-Thajuraj P, Baby D, Haleem S, Sreedhar S, Devang-Divakar D (2016) Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. J Clin Exp Dent 8:e71–e77 DOI: https://doi.org/10.4317/jced.52493

Zhang J, Liu T, Liu Z, Wang Q (2019) Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement. Polymer (Guildf) 173:103–109 DOI: https://doi.org/10.1016/j.polymer.2019.04.028

Downloads

Published

2024-07-14

How to Cite

Jafri, N. H. S., Jimat, D. N., Wan Nawawi, W. M. F., Ahmad Nor, Y., & Amid, A. (2024). Effect of Incorporating Cellulose Nanofibers and Lemongrass Essential Oil in Polyvinyl Alcohol-Polyethylene Glycol/Glycerin Hydrogel for Wound Dressing. IIUM Engineering Journal, 25(2), 99–115. https://doi.org/10.31436/iiumej.v25i2.3240

Issue

Section

Chemical and Biotechnology Engineering

Most read articles by the same author(s)