MECHANICAL PROPERTIES, MORPHOLOGY, AND HYDROLYTIC DEGRADATION BEHAVIOR OF POLYLACTIC ACID / THERMOPLASTIC POLYURETHANE BLENDS
DOI:
https://doi.org/10.31436/iiumej.v21i1.1051Keywords:
Polylactic Acid, Thermoplastic Polyurethane, Polymer Blends, Mechanical Properties, and Hydrolytic Degradation.Abstract
Polylactic acid (PLA) has attracted tremendous interest to be utilized as the replacement for petroleum-based polymers as it possesses good biodegradability, can be derived from renewable sources, and shows high mechanical strength. However, its inherent brittleness and low toughness has limited its usage in broader applications. In this work, PLA was melt blended with tough thermoplastic polyurethanes (TPU) in order to produce eco-friendly polymeric materials with balanced mechanical properties. Moreover, the miscibility and the hydrolytic degradation behaviour of PLA/TPU blends were also investigated as it is important to control material degradation behaviour in some applications. Five compositions of specimens, i.e. neat PLA, PLA/TPU 75/25 vol%, PLA/TPU 50/50 vol%, PLA/TPU 25/75 vol%, and neat TPU, were prepared by melt blending PLA with TPU using an internal mixer, followed by compression moulding. Tensile and impact tests were performed to evaluate the mechanical properties. From the tests, it was apparent that the elongation-at-break and impact strength of the blends increased as the TPU content increased. Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) observation were conducted to evaluate the miscibility of PLA/TPU blends. DMA results of the blends revealed two tangent delta peaks, indicating that the blends were immiscible, and the SEM micrographs supported this trend. Finally, hydrolytic degradation behaviour of PLA, TPU and PLA/TPU blends was investigated by measuring the weight loss after immersion of the specimens in alkaline solution at a predetermined time, i.e. every 24 hours for up to 8 days. It was found that the degradation behaviour is affected by blend composition, where PLA/TPU 50/50 vol% showed the fastest degradation rate. This result might be ascribed to the co-continuous morphology shown in the PLA/TPU blend 50/50 vol%.
ABSTRAK: Polilaktik asid (PLA) telah menarik banyak minat untuk digunakan sebagai pengganti polimer berasaskan petroleum, kerana ia mempunyai biodegradabiliti yang baik, boleh diperolehi daripada sumber yang boleh diperbaharui, dan mempunyai kekuatan mekanikal yang tinggi. Walau bagaimanapun, kerapuhan dan keliatannya yang rendah telah menghadkan penggunaannya dalam aplikasi yang lebih luas. Dalam kajian ini, leburan PLA dicampurkan dengan poliuretan thermoplastik (TPU) bagi menghasilkan bahan polimer yang mesra alam beserta dengan sifat-sifat mekanikal yang seimbang. Selain itu, daya kebolehcampuran dan degradasi hidrolitik daripada campuran PLA/ TPU juga telah dikaji kerana bagi sesetengah aplikasi, faktor degradasi adalah sangat penting. Bagi menghasilkan lima komposisi sampel, iaitu PLA tulen, PLA/TPU 75/25 vol%, PLA/TPU 50/50 vol%, PLA/TPU 25/75 vol%, dan TPU tulen, PLA dan TPU telah dicairkan dan diadun menggunakan mesin pencampur internal, diikuti dengan kaedah pengacuan kompresi. Untuk mengkaji sifat-sifat mekanikal, ujian regangan dan impak telah dijalankan. Hasil ujian tersebut menunjukkan peningkatan nilai pemanjangan pada titik putus dan kekuatan impak, seiring dengan peningkatan komposisi TPU. Manakala, penilaian daya kebolehcampuran diantara PLA dan TPU dijalankan menggunakan analisis mekanikal dinamik (DMA) dan mikroskop pengimbas elektron (SEM). Keputusan DMA, hasil daripada campuran tersebut mendedahkan dua puncak tangen delta, menunjukkan bahawa dua campuran tersebut tidak memiliki daya bolehcampur yang baik. Kesimpulan ini disokong pula oleh gambar mikro dari hasil ujian SEM. Akhir sekali, degradasi hidrolitik PLA, TPU dan campuran PLA/TPU dikaji melalui pengukuran berat sampel setelah direndam di dalam larutan alkali pada masa yang ditetapkan, iaitu setiap 24 jam sehingga 8 hari. Hasil daripada ujian tersebut mendapati degradasi hidrolitik dipengaruhi oleh komposisi campuran. Campuran PLA/TPU dengan komposisi 50/50 vol% menunjukkan kadar penurunan berat yang paling cepat. Hasil ujian ini mungkin boleh dikaitkan dengan sifat morfologi co-continuous yang ditunjukkan dalam campuran PLA/TPU 50/50 vol%.
Downloads
Metrics
References
Imre B, Bedő D, Domján A, Schön P, Vancso GJ, Pukánszky B. (2013) Structure, properties and interfacial interactions in poly (lactic acid)/polyurethane blends prepared by reactive processing. European Polymer Journal, 49(10):3104-3113.
Wang M, Wu Y, Li YD, Zeng JB. (2017) Progress in toughening poly (lactic acid) with renewable polymers. Polymer Reviews, 57(4):557-93.
Rasal RM, Janorkar AV, Hirt DE. (2010) Poly (lactic acid) modifications. Progress in Polymer Science, 35(3):338-56.
Feng F, Ye L. (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science, 119(5):2778-2783.
Han JJ, Huang HX. (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science, 120(6):3217-23.
Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS. (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering C, 33(8):4767-4776.
Jašo V, Cvetinov M, Rakić S, Petrović ZS. (2014) Bio‐plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22):41104.
Jing X, Mi HY, Peng XF, Turng LS. (2015) The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polymer Engineering and Science, 55(1):70-80.
Oliaei E, Kaffashi B, Davoodi S. (2016) Investigation of structure and mechanical properties of toughened poly (l‐lactide)/thermoplastic poly (ester urethane) blends. Journal of Applied Polymer Science, 133(15):43104.
Siracusa V, Rocculi P, Romani S, Dalla Rosa M. (2008) Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12):634-43.
Elsawy MA, Kim KH, Park JW, Deep A. (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79:1346-52.
Jašo V, Glenn G, Klamczynski A, Petrović ZS. (2015) Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polymer Testing, 47:1-3.
Dogan SK, Boyacioglu S, Kodal M, Gokce O, Ozkoc G. (2017) Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends:“Effects of compatibilization”. Journal of the Mechanical Behavior of Biomedical Materials, 71:349-61.
Li MX, Kim SH, Choi SW, Goda K, Lee WI. (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Composites Part B: Engineering, 96:248-54.
Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M. (2006) Miscibility and hydrolytic degradation in alkaline solution of poly (L-lactide) and poly (methyl methacrylate) blends. Polymer, 47(13):4839-4844.
Gu X, Raghavan D, Nguyen T, VanLandingham MR, Yebassa D. (2001) Characterization of polyester degradation using tapping mode atomic force microscopy: exposure to alkaline solution at room temperature. Polymer Degradation and Stability,74(1):139-49.
Yang S, Madbouly SA, Schrader JA, Srinivasan G, Grewell D, McCabe KG, Kessler MR, Graves WR. (2015) Characterization and biodegradation behavior of bio-based poly (lactic acid) and soy protein blends for sustainable horticultural applications. Green Chemistry, 17(1):380-393.