THE EFFECTS OF SUPERCRITICAL CARBON DIOXIDE ON THE DEGRADATION AND ANTIMICROBIAL PROPERTIES OF PLA BIOCOMPOSITE
DOI:
https://doi.org/10.31436/iiumej.v21i1.1140Keywords:
Polylactic acid, Durian Skin Fibre, Supercritical carbon dioxide, Degradation properties, Antimicrobial activityAbstract
Biopolymer products that is biodegradable presently attracting an attention from researchers and industry. The biodegradable packaging based on polylactic acid (PLA), durian skin fibre (DSF), epoxidized palm oil (EPO) and incorporated with cinnamon essential oil (CEO) as antimicrobial agent have been developed and showed to be a promising field of research. This paper reported the effects of supercritical carbon dioxide on the degradation and antimicrobial properties of PLA biocomposite films produced via solvent casting. The biocomposites underwent supercritical carbon dioxide (SCCO2) treatment at two different conditions under 40 °C temperature and at 100 bar and 200 bar pressure. Water absorption test showed that the untreated PLA biocomposite absorbed most water as compared to treated PLA biocomposite with SCCO2 at 5.1%. This is due to the hydrophilic nature of the fibre that absorbed water molecules. Soil burial test showed that the treated PLA biocomposite possessed the highest value of weight losses after 80 days with 97.8%. Biocomposite with the presence of CEO demonstrated antimicrobial activity against both gram-positive and gram-negative bacteria. This showed that SCCO2 significantly improved the properties of PLA biocomposite films. The supercritical fluid treatment of PLA biocomposite could be an alternative for active packaging industries to ensure that the packaging product meets the requirement by consumers as well as being an eco-friendly product.
ABSTRAK: Produk biopolimer yang biodegradasi pada masa ini menarik perhatian dari penyelidik dan industri. Pembungkusan biodegradasi berasaskan polilaktik asid (PLA), serat kulit durian (DSF), minyak kelapa sawit terepoksi (EPO) dan ditambah dengan minyak pati kayu manis (CEO) sebagai agen antimikrobial telah dibangunkan dan menjadi bidang penyelidikan. Artikel ini melaporkan kesan karbon dioksida superkritikal terhadap sifat-sifat degradasi dan antimikrobik dari filem biokomposit PLA yang dihasilkan melalui pemutus pelarut. Biokomposit telah menjalani rawatan superkritikal karbon dioksida (SCCO2) pada dua keadaan yang berbeza di bawah suhu 40 °C pada 100 bar dan 200 tekanan bar. Ujian penyerapan air menunjukkan bahawa biocomposite PLA yang tidak dirawat menyerap kebanyakan air berbanding komposisi lain dengan 5.1%. Ini disebabkan sifat hidrofilik serat yang menyerap molekul air. Ujian penanaman dalam tanah menunjukkan bahawa biocomposite PLA yang dirawat mempunyai nilai kehilangan berat tertinggi setelah 80 hari dengan 97.8%. Biokomposit dengan kehadiran CEO menunjukkan aktiviti antimikrobial terhadap bakteria gram-positif dan gram-negatif. Ini menunjukkan bahawa SCCO2 meningkatkan sifat-sifat filem biocomposite PLA. Rawatan cecair superkritikal PLA biocomposite boleh menjadi alternatif bagi industri pembungkusan untuk memastikan produk pembungkusan memenuhi keperluan pengguna serta menjadi produk mesra alam.
Downloads
Metrics
References
Anuar H, Nur Fatin Izzati B, Sharifah Nurul Inani SM, Siti Nur E’zzati MA, Siti Munirah Salimah AB, Ali FB, Manshor MR. (2017) Impregnation of cinnamon essential oil into plasticised polylactic acid biocomposite film for active food packaging. Journal of Packaging Technology and Research, 1(3): 149-157.
Lithner D. (2011) Environmental and health hazards of chemicals in plastic polymers and products. PhD thesis. University of Gothenburg, Department of Plant and Environmental Sciences.
Thothong S, Jarerat A, Sriroth K, Tantatherdtam R. (2013) Degradation of porous starch granules and poly (butylene adipate-co-terephthalate) (PBAT) blends: Soil burial and enzymatic tests. Advanced Materials Research, 651: 12-17.
Nur Aimi MN, Anuar H, Manshor MR, Wan Nazri WB, Sapuan SM. (2014) Optimizing the parameter in durian skin fiber reinforced polypropylene composites by response surface methodology. Industrial Crops and Products, 54: 291-295.
Yussuf AA, Massoumi I, Hassan A. (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibres on the mechanical, thermal and biodegradability. Journal of Polymers and the Environment, 18(3): 422-429.
Gunti R, Ratna Prasad AV, Gupta AVSSKS. (2016) Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal and elephant grass. Polymer Composites, 39(4): 1125-1136.
Kumar R, Yakubu MK, Anandjiwala RDY. (2010) Biodegradation of flax fibre-reinforced polylactic acid. Express Polymer Letters, 4(7): 423-430.
Wan Nazri WB, Ezdiani ZN, Romainor MM., Erma KS, Jurina J, Noor Fadzlina IZA. (2014)Effect of fibre loading on mechanical properties of durian skin fibre composite. Journal Tropical Agriculture and Food Science, 42(2): 169-174.
Manshor MR, AnuarH, Nur Aimi NM, Ahmad Fitrie MI, Wan Nazri WB, Sapuan SM, El-Shekeil YA, Wahid MU. (2014) Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Material and Design, 59: 279-286.
Ali F, Awale Fakhruldin RJ, Anuar H. (2016) Plasticizing poly (lactic acid) using epoxidized palm oil (EPO) for environmental friendly packaging material. Malaysian Journal of Analytic Sciences, 20(5): 1153-1158.
Silverajah VSG, Ibrahim NA, Yunus WM, Hassan HA, Woei CB. (2012) A comparative study on the mechanical, thermal and morphological characterization of poly (lactic acid)/epoxidized palm oil blend. International Journal of Molecular Sciences, 13: 5878-5898.
Chieng BW, Ibrahim NA, Wan Md Zin WY, Hussein MZ. (2014) Epoxidized vegetable oils plasticized poly (lactic acid): Mechanical, thermal, and morphology properties. Journal Applied Polymer Science, 130: 4576-4580.
Souza A, Dias AMA, Sousa HC, Tadini CC. (2013) Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54: 346-352.
Qin Y, Yang J, Xue J. (2015) Characterization of antimicrobial poly (lactic acid)/ poly (trimethylene carbonate) films with cinnamaldehyde. Journal of Material Science, 50(3): 1150-1158.
Erdohan ZÖ, BelgizarC, Turhan KNB. (2013) Characterization of antimicrobial polylactic acid-based films. Journal of Food Engineering, 119(2): 308-315.
Vazirian MA, Alehabib S, Hossein J, Mohammad RF, Toosi AN, Mahnaz K. (2015) Antimicrobial effect of cinnamon (Cinnamomum verum J. Presl) bark essential oil in cream-filled cakes and pastries. Research Journal of Pharmacognosy, 2(4): 11-16.
Wu J, Sun X, Guo X, Ge S, Zhang Q. (2017) Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4): 185-192.
Milovanovic S, Kuska R, Skoric-Lucic M, Kalagasidis-Krusic M, Frerich S, Zizovic, I, Ivanovic J. (2016) Swelling kinetics and impregnation of PLA with thymol under supercritical CO2 conditions. Tehnika, 71(1): 16-20.
Patpen P, Russly AR, Rosnita AT, Khalina A. (2015) Mechanical properties and water absorption behaviour of durian rind cellulose reinforced poly (lactic acid) biocomposites. International Journal on Advanced Science Engineering Information Technology, 5(5): 343-348.
González A, Alvarez I, Cecilia I. (2013) Soy protein - Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids, 33(2): 289-296.
Souza A, Goto GEO, Mainardi JA, Coelho ACV,Tadini CC. (2014) Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydrate Polymers, 102: 830-837.
Aranda-GarciaFJ, González-Núñez R, Jasso-Gastinel CF, Mendizábal E. (2015) Water absorption and thermomechanical characterization of extruded starch/ poly (lactic acid)/ agave bagasse fibre bioplastic composites. International Journal of Polymer Sciences, 2015: 1-7.
Emad AJA, Wan Md. Zain WY, Nor Azowa I, Mohd Zaki AR. (2010) Properties of epoxidized palm oil plasticized polylactic acid. Journal Material Science, 45: 1942-1946.
Seniha GF, Yagci Y, TuncerEAY. (2006) Polymers from Triglyceride Oils. Progress in Polymer Science, 31: 633-670.
Amer ZJA, Saeed AQ. (2015) Soil burial degradation of polypropylene/ starch blend. International Journal of Technical Research and Applications, 3(1): 91-96.
Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ. (2013) Biodegradation behaviour of poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5): 918-926.
Lardjane N, Belhaneche BN. (2009) Migration of additives in simulated landfills and soil burial degradation of plasticized PVC. Journal of Applied Polymer Science, 111(1): 525-531.
Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R. (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers, 98(1): 117-1126.
Santos SF, Novales MG. (2012) Essential Oils from Aromatic Herbs as Antimicrobial Agents. Current Opinion in Biotechnology, 23: 136-141.
Debiagi F, Kobayashi, Renata KT, NakazatoGP, Luciano A, Mali S. (2014) Biodegradable active packaging based on cassava bagasse polyvinyl alcohol and essential oils. Industrial Crops and Products, 52: 664-670.
Bongiovanni V, Colombo M, Laura C, Andrea T, Daniela C. (2017) Determining odour-active compounds in a commercial sample of cinnamomun cassia essential oil using GC-MS and GC-O. Journal of Chromatography & Separation Techniques, 8(1): 1-7.
Gende L, Floris I, Fritz R, Eguaras M. (2008) Antimicrobial activity of cinnamon (Cinnamon zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. B. Insectol, 61(1): 1-4.
Adinew B. (2014) GC-MS and FT-IR analysis of constituents of essential oil from cinnamon bark growing in South-west of Ethiopia. International Journal of Herbal Medicine, 1(6): 22-31.
Goni P, Lopez P, Sanchez C, Gomez LR, Beceril R, Nerin C. (2009) Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116: 982-989.