INVESTIGATION OF ENHANCED ELECTROCOAGULATION-MEMBRANE PROCESS FOR WATER RECLAMATION FROM PALM OIL MILL EFFLUENTS

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i1.2629

Keywords:

Electrocoagulation, Membrane filtration, Activated carbon, Membrane fouling, Water reclamation

Abstract

The process of electrocoagulation (EC) enhanced with adsorbent addition, as a pre-treatment for ultrafiltration membrane, is widely unexplored in oil palm-based wastewater treatment. Utilizing predetermined EC operational parameters and a defined activated carbon (AC) dosage for biotreated palm oil mill effluents (BPOME), membrane fouling was studied during crossflow membrane filtration at 0.5 bar transmembrane pressure and 1 kDa membrane pore size. The dominant fouling mechanism in membrane filtration without EC-AC pretreatment of BPOME, was cake formation, which was determined through Hermia’s pore blocking models. However, after EC-AC pre-treatment, the membrane fouling was mitigated. Moreover, the pre-treatment process, AC assisted EC, sustainably enhanced the final treated effluent quality in addition to enhancing fouling mitigation in the subsequent membrane filtration. The removal of Total Suspended Solids (TSS), turbidity and color were nearly 100% and Chemical Oxygen Demand (COD) was 99.7% removed with final value of 5±1 mg/L, which is within the range of reusable water standards.

ABSTRAK: Proses elektrokoagulasi (EC) yang ditingkatkan dengan bahan penyerap, adalah pra-rawatan bagi membran penuras ultra. Walau bagaimanapun ianya masih belum luas diterokai dalam sistem rawatan air buangan berasaskan kelapa sawit. Mengguna pakai parameter operasi EC pra-tentu dan dos karbon aktif tentu (AC) bagi bio-rawatan efluen kilang kelapa sawit yang terawat (BPOME), mendakan membran telah dikaji menggunakan teknik penurasan membran aliran silang pada tekanan transmembran 0.5 bar dan saiz liang membran 1 kDa. Mekanisme mendakan membran kotoran dominan dalam penurasan membran tanpa pra-rawatan EC-AC BPOME, adalah pembentukan kek, iaitu terhasil melalui model penyumbatan liang Hermia. Walau bagaimanapun, selepas pra-rawatan EC-AC, mendakan kotoran membran  dapat dikurangkan. Tambahan, proses pra-rawatan AC-EC, secara mampan dapat menambah kualiti akhir efluen terawat selain dapat meningkatkan mitigasi kotoran mendakan dalam penurasan membran seterusnya. Penyingkiran Total Pepejal Terampai (TSS) adalah 99.7%, kekeruhan dan warna adalah hampir 100%. Keperluan Oksigen Kimia (COD) tersingkir sebanyak 99.7% dengan nilai akhir sebanyak 5±1 mg/L, iaitu dalam julat piawaian air boleh guna semula.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mohammed Saedi Jami, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia

Head of Department, Department of Chemical Engineering and Sustainability, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Fathilah Ali, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia

Associate Professor, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Nik Rashida Nik Abdul Ghani, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia

Trainee, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Radhia Nedjai, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia

PhD graduate, Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Kuala Lumpur, Malaysia

References

Baggio G, Qadir M, Smakhtin V. (2021) Freshwater availability status across countries for human and ecosystem needs. Science of the Total Environment, 792: 148230. https://doi.org/10.1016/j.scitotenv.2021.148230. DOI: https://doi.org/10.1016/j.scitotenv.2021.148230

Rakhmania, Kamyab H, Yuzir MA, Abdullah N, Quan LM, Riyadi FA, Marzouki R. (2022) Recent applications of the electrocoagulation process on agro-based industrial wastewater: a review. Sustainability (Switzerland), 14(4): 1985. https://doi.org/10.3390/su14041985. DOI: https://doi.org/10.3390/su14041985

Xu J, Du Y, Qiu T, Zhou L, Li Y, Chen F, Sun J. (2021) Application of hybrid electrocoagulation–filtration methods in the pretreatment of marine aquaculture wastewater. Water Science and Technology, 83(6): 1315-1326. https://doi.org/10.2166/wst.2021.044. DOI: https://doi.org/10.2166/wst.2021.044

Elma M, Rahma A, Pratiwi AE, Rampun ELA. (2020) Coagulation as pretreatment for membrane-based wetland saline water desalination. Asia-Pacific J. Chemical Engineering, 15: 1-7. https://doi.org/10.1002/apj.2461. DOI: https://doi.org/10.1002/apj.2461

Tahreen A, Jami MS. (2021) Advances in antifouling strategies in membrane ultrafiltration: a brief review. J. Advanced Research in Materials Science, 76(1): 10-16. https://doi.org/https://doi.org/10.37934/arms.76.1.1016. DOI: https://doi.org/10.37934/arms.76.1.1016

Padmaja K, Cherukuri J, Anji Reddy M. (2020) A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. J. Water Process Engineering, 34: 101153. https://doi.org/10.1016/j.jwpe.2020.101153. DOI: https://doi.org/10.1016/j.jwpe.2020.101153

Tahreen A, Jami MS, Ali F, Yasin NMFM, Ngabura M. (2021) Promising potential of electro -coagulation process for effective treatment of biotreated palm oil mill effluents. Pollution, 7(3): 617-632. https://doi.org/10.22059/poll.2021.320645.1034.

Tahreen A, Jami MS, Ali F. (2021) Activated carbon assisted electrocoagulation process for treating biotreated palm oil mill effluent. IOP Conference Series: Materials Science and Engineering, 1192: 012026. https://doi.org/10.1088/1757-899x/1192/1/012026. DOI: https://doi.org/10.1088/1757-899X/1192/1/012026

APHA. (2002) Standard Methods for the Examination of Water and Wastewater.

Song L, Elimelech M. (1995) Theory of concentration polarization in crossflow filtration. J. Chemical Society, Faraday Transactions, 91: 3389-3398. https://doi.org/10.1039/FT9959103389. DOI: https://doi.org/10.1039/ft9959103389

Ezugbe EO, Rathilal S. (2020) Membrane technologies in wastewater treatment: A review. Membranes, 10(5): 89. https://doi.org/10.3390/membranes10050089. DOI: https://doi.org/10.3390/membranes10050089

Idrisa MA, Jami MS, Muyibi SA. (2010) Tertiary treatment of biologically treated palm oil mill effluent (POME) using UF membrane system: Effect of MWCO and transmembrane pressure. International J. Chemical and Environmental Engineering, 1(2).

Li HB, Shi WY, Zhang YF, Liu DQ, Liu XF. (2014) Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane. Polymers, 6: 1846-1861. https://doi.org/10.3390/polym6061846. DOI: https://doi.org/10.3390/polym6061846

Ahmad MA, Zainal BS, Jamadon NH, Yaw TCS, Abdullah LC. (2020) Filtration analysis and fouling mechanisms of PVDF membrane for POME treatment. J. Water Reuse and Desalination, 10: 187-199. https://doi.org/10.2166/wrd.2020.101. DOI: https://doi.org/10.2166/wrd.2020.101

Kumar RV, Goswami L, Pakshirajan K, Pugazhenthi G. (2016) Dairy wastewater treatment using a novel low-cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J. Water Process Engineering, 13: 168-175. https://doi.org/10.1016/j.jwpe.2016.08.012. DOI: https://doi.org/10.1016/j.jwpe.2016.08.012

Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF. (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: An 8-year follow-up study. American J. Epidemiology, 152(1):59-66. https://doi.org/10.1093/aje/152.1.59. DOI: https://doi.org/10.1093/aje/152.1.59

Creed J, Brockhoff C, Martin TD. (1994) Method 200.8 Determination of trace elements in waters and wastes by Inductively Coupled Plasma-Mass Spectrometry. US Environmental Protection Agency, 4: 1-57.

Haindl S, Stark J, Dippel J, Handt S, Reiche A. (2020) Scale-up of microfiltration processes. Chemie Ingenieur Technik, 92(6): 746-758. https://doi.org/10.1002/cite.201900025. DOI: https://doi.org/10.1002/cite.201900025

Zhang Y, Fu B, Wang X, Ma C, Lin L, Fu Q, Li S. (2020) Algal fouling control in low-pressure membrane systems by pre-adsorption: Influencing factors and mechanisms. Algal Research, 52: 102110. https://doi.org/10.1016/j.algal.2020.102110. DOI: https://doi.org/10.1016/j.algal.2020.102110

Crook J, Ammerman D, Okun D, Matthews R. (2012) EPA Guidlines for Water Reuse.

Nidheesh PV, Khan FM, Kadier A, Akansha J, Bote ME, Mousazadeh M. (2022) Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.135756. DOI: https://doi.org/10.1016/j.chemosphere.2022.135756

Ghernaout D, Al-Ghonamy AI, Messaoudene NA, Aichouni M, Naceur MW, Benchelighem FZ, Boucherit A. (2015) Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) using aluminum electrodes. Separation Science and Technology (Philadelphia), 50(9): 1413-1420. https://doi.org/10.1080/01496395.2014.982763. DOI: https://doi.org/10.1080/01496395.2014.982763

Barhoumi A, Ncib S, Chibani A, Brahmi K, Bouguerra W, Elaloui E. (2019) High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon. Industrial Crops and Products, 140: 111715. https://doi.org/10.1016/j.indcrop.2019.111715. DOI: https://doi.org/10.1016/j.indcrop.2019.111715

Cowan JAC, Mactavish F, Brouckaert CJ, Jacobs EP. (1992) Membrane treatment strategies for red meat abattoir effluents. Water Science Technology, 25: 137-148. DOI: https://doi.org/10.2166/wst.1992.0243

Barambu NU, Bilad MR, Huda N, Abdul N, Nordin H, Bustam MA, Doyan A, Roslan J. (2021) Effect of membrane materials and operational parameters on performance and energy consumption of oil/water emulsion filtration. Membranes, 11: 370. https://doi.org/10.3390/membranes11050370. DOI: https://doi.org/10.3390/membranes11050370

Downloads

Published

2024-01-01

How to Cite

Amina Tahreen, Jami, M. S., Ali, F., NIK RASHIDA NIK ABDUL GHANI, & Nedjai, R. (2024). INVESTIGATION OF ENHANCED ELECTROCOAGULATION-MEMBRANE PROCESS FOR WATER RECLAMATION FROM PALM OIL MILL EFFLUENTS. IIUM Engineering Journal, 25(1), 12–25. https://doi.org/10.31436/iiumej.v25i1.2629

Issue

Section

Chemical and Biotechnology Engineering

Funding data

Most read articles by the same author(s)