Adsorption, Baobab fruit shell, Breakthrough curves, Fixed-bed column, Phenol


A continuous adsorption study in a fixed-bed column using baobab fruit shell activated carbon (BF-AC) was investigated for phenol removal from an aqueous solution. Baobab fruit shell (BFS) was chemically activated using potassium hydroxide (KOH) at 700 °C in a nitrogen (N2) atmosphere. Scanning electron microscope (SEM), X-ray diffraction (XRD), and BET surface area analyses were performed for the characterization of BF-AC. Fixed-bed experiments were carried out and the effect of feed flowrate (10, 15, 20 mL/min) and bed height (5, 10, 15 cm) on the adsorption were investigated by evaluating the breakthrough curves. BET surface area of BF-AC was 1263 m2/g, indicating its well-developed pores and its good quality as an adsorbent. The findings showed that the exhaustion time (t????) and breakthrough time (tb) reduced as the flowrate augmented, while they increased as the bed height augmented. With the increase in the bed height and the flowrate, phenol solution volume treated was augmented. Also, BF-AC with bed height of 15 cm provided better elimination of phenol with carbon usage rate (CUR) of 1.74 g/L and empty bed contact time (EBCT) of 9.9 minutes. According to the findings, BF-AC is an effective adsorbent for removing phenol from aqueous solutions.

ABSTRAK: Kajian penjerapan berterusan menggunakan kulit buah baobab diaktifkan karbon (BF-AC) telah dikaji mengguna pakai kolum lapisan tetap bagi penyingkiran fenol daripada larutan cecair. Kulit buah Baobab (BFS) diaktifkan secara kimia menggunakan kalium hidroksida (KOH) pada suhu 700 °C dalam atmosfera nitrogen (N2). Imbasan mikroskop elektron (SEM), pembelahan sinar-X (XRD, dan analisis permukaan BET dijalankan bagi pencirian BF-AC. Eksperimen kolum lapisan tetap bagi mengkaji kesan penjerapan pada aliran suapan (10, 15, 20 mL/min) dengan ketinggian (5, 10, 15 cm) dinilai melalui lengkung bulus. Kawasan permukaan BET BF-AC adalah 1263 m2/g, menunjukkan liang yang elok terbentuk dan berkualiti baik sebagai penyerap. Penemuan ini menunjukkan bahawa puncak masa maksima (t????) dan masa terbaik (tb) berkurangan pada kadar aliran bertambah, sebaliknya ianya meningkat pada ketinggian bertambah. Dengan penambahan ketinggian katil dan kadar aliran, jumlah larutan fenol yang dirawat telah bertambah. Selain itu, BF-AC pada ketinggian 15 cm menunjukkan penghapusan fenol terbaik pada kadar penggunaan karbon (CUR) 1.74 g/L dan masa sentuhan kolum kosong (EBCT) 9.9 minit. Ini menunjukkan, BF-AC adalah penyerap yang berkesan bagi menyingkirkan fenol daripada larutan cecair.


Download data is not yet available.


Metrics Loading ...


Nedjai R, Kabbashi, NA Alkhatib, MFR Alam, MZ. (2021) Removal of Phenol from Aqueous Solution by Adsorption onto Baobab Fruit Shell Activated Carbon?: Equilibrium and Kinetics Studies. J. Environ. Treat. Tech., 9: 686-697.

Rashed MN. (2013) Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Org. Pollut. Monit. Risk Treat., 7: 167-194. DOI:

Nedjai R, Kabbashi NA, Alam MZ, Al-Khatib MFR. (2021) Statistical Optimization of Adsorption Processes for the Removal of Phenol by Activated Carbon Derived from Baobab Fruit Shell. IOP Conf. Ser. Mater. Sci. Eng., 1192: 012003. DOI:

Ochando-Pulido JM, González-Hernández R, Martinez-Ferez A. (2018) On the effect of the operating parameters for two-phase olive-oil washing wastewater combined phenolic compounds recovery and reclamation by novel ion exchange resins. Sep. Purif. Technol., 195: 50-59. DOI:

Mohamad Said KA, Ismail AF, Abdul Karim Z, Abdullah MS, Hafeez A. (2021) A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf. Environ. Prot., 151: 257-289. DOI:

Qiu B, Shao Q, Shi J, Yang C, Chu H. (2022) Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol., 300: 2023. DOI:

Peings V, Frayret J, Pigot T. (2015) Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants. J. Environ. Manage., 157: 287-296. DOI:

Liu J, Xie J, Ren Z, Zhang W. (2013) Solvent Extraction of Phenol with Cumene from Wastewater. Desalin. Water Treat., 51: 3826-3831. DOI:

Ahmad, NSB, Mamun, AA, Nedjai, R. (2023). Assessment of expired coagulant for water treatment. In AIP Conference Proceedings. 2713(1). AIP Publishing. DOI:

Sharma NK, Philip L. (2014) Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions. Chem. Eng. J., 256: 255-267. DOI:

Bedoui A, Saad MEK, Elaloui E, Rabaaoui N, Allagui MS, Moussaoui Y (2013). Anodic oxidation of o-nitrophenol on BDD electrode: Variable effects and mechanisms of degradation. J. Hazard. Mater., 250: 447-453. DOI:

Jawad AH, Sabar S, Ishak MAM, Wilson LD, Norrahma ASS, Talari MK, Farhan AM. (2017) Microwave-Assisted Preparation of Mesoporous-Activated Carbon from Coconut (Cocos nucifera) Leaf by H3PO4 Activation for Methylene Blue Adsorption. Chem. Eng. Commun., 204: 1143-1156. DOI:

Mofidian R, Barati A, Jahanshahi A, Shahavi MH. (2020) Fabrication of novel agarose–nickel bilayer composite for purification of protein nanoparticles in expanded bed adsorption column. Chem. Eng. Res. Des., 159: 291-299. DOI:

Muthamilselvi P, Karthikeyan R, Kapoor A, Prabhakar S. (2018) Continuous fixed-bed studies for adsorptive remediation of phenol by garlic peel powder. Int. J. Ind. Chem., 9: 379-390. DOI:

Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. (2004) Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater., 113: 223-230. DOI:

Girish CR, Murty VR. (2015) Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Packed Bed Studies and Prediction of Breakthrough Curves. Environ. Process., 2: 773-796. DOI:


Allahkarami E, Dehghan Monfared D, Silva LFO, Dotto GL. (2023) Application of Pb–Fe spinel-activated carbon for phenol removal from aqueous solutions: fixed-bed adsorption studies. Environ. Sci. Pollut. Res., 30: 23870-23886. DOI:

Dalhat MA, Mu’Azu ND, Essa MH. (2021) Generalized decay and artificial neural network models for fixed-Bed phenolic compounds adsorption onto activated date palm biochar. J. Environ. Chem. Eng., 9(1): 2023. DOI:

Kumar A, Rout DR, Jena HM. (2022) Phosphoric acid modified activated carbon prepared from Fox nutshell for adsorption of phenol: batch and continuous studies. Int. J. Environ. Anal. Chem. 3099067. DOI:

Iheanacho OC, Nwabanne JT, Obi CC, Onu CE. (2021) Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling. South African J. Chem. Eng., 36: 80-93. DOI:

Mandal A, Majumder A, Banik I, Ghosh K, Bar N, Das SK. (2021) Fixed-bed column study for removal of phenol by neem leaves – Experiment, MLR and ANN analysis. Sustain. Chem. Pharm., 23: 100514. DOI:

Lua AC, Jia Q. (2009) Adsorption of phenol by oil-palm-shell activated carbons in a fixed bed. Chem. Eng. J,. 150: 455-461. DOI:

Nedjai R, Kabbashi NA, Alam MZ, Alkhatib MFR. (2022) Optimisation of Activated Carbon Production from Baobab Fruit Shells by Chemical Activation with KOH for the Removal of Phenol. Water Conserv. Manag., 6: 45-50. DOI:

Nedjai R, Alkhatib MFR, Alam MZ, Kabbashi NA. (2021) Adsorption of Methylene Blue onto Activated Carbon Developed from Baobab Fruit Shell By Chemical Activation?: Kinetic Equilibrium Studies. IIUM Eng. J., 22: 31-49. DOI:

Nedjai R, Kabbashi NA, Alam MZ, Al-Khatib MFR. (2021) Production and Characterization of Activated Carbon from Baobab Fruit Shells by Chemical Activation Using ZnCl2, H3PO4 and KOH. J. Phys. Conf. Ser. 2129. DOI:

Nedjai R. (2021) Production and Characterization of Activated Carbon from Baobab Fruit Shell Via Chemical Activation for the Removal of Phenol, PhD thesis, Kulliyyah of Engineering, International Islamic University Malaysia.

Vunain E, Kenneth D, Biswick T. (2017) Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: equilibrium and kinetics studies. Appl. Water Sci., 7: 4301-4319. DOI:

Chigondo F, Nyamunda BC, Sithole SC, Gwatidzo L. (2013) Removal of lead (II) and copper (II) ions from aqueous solution by baobab (Adononsia digitata) fruit shells biomass. IOSR Journal of Applied Chemistry, 5(1): 43-50. DOI: 10.9790/5736-0514350 DOI:

Vunain E, Biswick T. (2018) Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from Malawian baobab fruit shell wastes?: Equilibrium , kinetics and thermodynamic studies and thermodynamic studies. Sep. Sci. Technol., 54: 27-41. DOI:

Lezehari M, Baudu M, Bouras O, Basly, JP. (2012) Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads. J. Colloid Interface Sci., 379: 101-106. DOI:

Metcalf W. (2003) Metcalf and Eddy wastewater engineering: treatment and reuse. Wastewater Engineering: Treatment and Reuse McGraw Hill. New York, NY, 384.

Sotomayor FJ, Cychosz KA, Thommes M. (2018) Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res., 3: 34-50.

Kumar A, Jena HM. (2016) Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column, J. Clean. Prod., 137: 1246-1259. DOI:

Ahmad AA, Hameed BH. (2010) Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater., 175: 298-303. DOI:

Bansal RC, Goyal M. (2005) Activated Carbon Adsorption. CRC press DOI:

Idris MA. (2010) Use of hybrid membrance system for the production of process water from biologically treated palm oil mill effluent (POME), PhD thesis, Kulliyyah of Engineering, International Islamic University Malaysia.

Patel H. (2020) Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci. Rep., 10: 1-12. DOI:

Chowdhury ZZ, Zain SM, Rashid AK, Rafique RF, Khalid K. (2013) Breakthrough curve analysis for column dynamics sorption of Mn(II) ions from wastewater by using Mangostana garcinia peel-based granular-activated carbon. J. Chem. 2013: 959761.

Kapur M, Mondal MK. (2016) Design and model parameters estimation for fixed–bed column adsorption of Cu(II) and Ni(II) ions using magnetized saw dust. Desalin. Water Treat., 57: 12192-12203. DOI:




How to Cite

Nedjai, R., Kabbashi, N., Alam, M. Z., Alkhatib, M., Tahreen, A., & Al Mamun, A. (2024). ADSORPTION PERFORMANCE OF FIXED-BED COLUMNS FOR THE REMOVAL OF PHENOL USING BAOBAB FRUIT SHELL BASED ACTIVATED CARBON. IIUM Engineering Journal, 25(1), 59–71.



Chemical and Biotechnology Engineering

Most read articles by the same author(s)