LIPASE IMMOBILIZATION ON FIBERS GRAFTED WITH POLYGLYCIDYL METHACHRYLATE
DOI:
https://doi.org/10.31436/iiumej.v20i1.1002Keywords:
Immobilization, enzyme, lipase, optimization, FCCCD, RSM, fibers, nylon, stability, reusability, kinetics studyAbstract
ABSTRACT: Lipase enzyme originated from wheat germ was immobilized on nylon -6- grafted with polyglycidyl methachrylate (PGMA). The immobilization of enzyme experiments were designed and studied using face centred central composite design (FCCCD) under response surface methodology (RSM). Prior to immobilization, the polymer was activated with diethyl amine/ethanol to introduce an amine functional group to facilitate covalent bonding with the enzyme. The immobilized and free enzymes were characterized for effect of temperature and pH on enzyme activity, stability, storage and reusability as well as kinetics studies. ANOVA revealed that optimum lipase activity of 0.287 U/ml was achieved at immobilization time of 5 h, pH of 6 and 1.0 mg/ml for enzyme concentration. The optimum temperatures and pH for immobilized and free enzymes were 45 °C and 35 °C, and 8 and 7, respectively. The immobilized enzyme showed higher stability compared to free enzyme. The immobilized enzyme retained 18% of its activity after being recycled 8 times. In a storage stability test, immobilized lipase was able to retain 70% of its activity after being stored for 30 days, while free enzyme activity dropped to 15 % after 20 days of storage.
ABSTRAK:Enzim Lipase telah dihasilkan daripada mikroorganisma pegun gandum di atas nilon -6- dan digraf bersama poliglisidel methakrilet (PGMA). Enzim pegun ini direka dan dikaji secara eksperimen menggunakan reka bentuk campuran pusat pada permukaan (FCCCD) di bawah kaedah tindak balas permukaan (RSM). Sebelum menjadi pegun, polimer ini telah diaktifkan dengan dietil amine/ethanol bagi menghasilkan kumpulan fungsi amine bagi membantu ikatan kovalen atom pada enzim. Enzim pegun dan bebas ini telah dikategorikan mengikut kesan enzim ke atas suhu, aktiviti enzim ke atas kesan pH, kestabilan, keboleh-simpanan dan keboleh-gunaan balik, serta ujian tindak balas kinetik. ANOVA membuktikan bahawa aktiviti optimum enzim lipase ini adalah sebanyak 0.287 U/ml telah terhasil selama 5 jam pegun, pada pH 6 dan kepekatan enzim sebanyak 1.0 mg/ml. Suhu dan pH optimum, pada enzim pegun dan enzim bebas ini adalah pada 45 °C dan 35 °C, dan pH 8 dan 7, masing-masing. Enzim pegun ini menunjukkan lebih stabil daripada enzim bebas. Enzim pegun dilihat kekal 18% daripada aktivitinya selepas 8 kali ulangan. Melalui ujian kestabilan simpanan, enzim lipase pegun dapat mengekalkan 70% daripada aktivinya selepas disimpan selama 30 hari, manakala aktiviti enzim bebas telah menurun kepada 15% selepas 20 hari dalam simpanan.
Downloads
Metrics
References
Hung TC, Giridhar R,Chiou SH, Wu WT. (2003). Binary immobilization of Candida rugosa lipase on chitosan. J. Mol. Catal. B Enzym., 26: 69-7.8
Won K, Kim S, Kim KJ, Park HW, Moon SJ. (2005). Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem., 40: 2149-2154.
Yujun W, Jian X, Guangsheng L, Youyuan D. (2008). Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresour. Technol., 99: 2299-2303.
Singh BD. (2009). Biotechnology: Expanding Horizons. India Kalyani
Alkhatib M. (2011). Enzymatic hydrolysis of oil palm empty fruit bunch using immobilized cellulase enzyme. African J. Biotechnol., 10: 18811-18815.
Alkhatib M, Alam Z, Mohammed R. (2012). Statistical modelling optimisation of cellulase enzyme immobilisation on functionalised multi-walled carbon nanotubes for empty fruit bunches degradation. Aust. J. Basic Appl. Sci., 6: 30-38.
Bowers LD, Carr PW. (1976). Applications of Immobilized Enzymes in Analytical Chemistry. Anal. Chem., 48: 544A–559A.
Lu J, Toy PH. (2009). Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem. Rev., 109: 815-838.
Chiou SH, Wu WT. (2004). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials. 25: 197-204.
Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu ZK. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J. Mol. Catal. B Enzym., 70: 95-100.
Prlainović NŽ, Knežević-Jugović ZD, Mijin DŽ, Bezbradica DI. (2011). Immobilization of lipase from Candida rugosa on Sepabeads®: The effect of lipase oxidation by periodates. Bioprocess Biosyst. Eng., 34: 803-810.
Tran DT, Chen CL, Chang JS. (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J. Biotechnol. 158: 112-119.
Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the Enzyme. Enzyme Microb. Technol. ,71: 53-57.
Nasef MM, Güven O. (2012). Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Prog. Polym. Sci., 37: 1597-1656. http://dx.doi.org/10.1016/j.progpolymsci.2012.07.004 DOI: https://doi.org/10.1016/j.progpolymsci.2012.07.004
Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H. (2007). Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules. 40: 6283-6290.
Nasef MM, Abbasi A, Ting TM. (2014). New CO2 adsorbent containing aminated poly(glycidyl methacrylate) grafted onto irradiated PE-PP nonwoven sheet. Radiat. Phys. Chem., 103: 72-74. http://dx.doi.org/10.1016/j.radphyschem.2014.05.031 DOI: https://doi.org/10.1016/j.radphyschem.2014.05.031
Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
Liu C-H, Lin Y-H, Chen C-Y, Chang J-S. (2009). Characterization of Burkholderia lipase immobilized on celite carriers. J. Taiwan Inst. Chem. Eng., 40: 359-363.
Zhu J, Sun G. (2012). Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities. React. Funct. Polym., 72: 839-845.
Yu CY, Li XF, Lou WY, Zong MH. (2013). Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: A highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. J. Biotechnol., 166: 12-19. doi: 10.1016/j.jbiotec.2013.04.015 DOI: https://doi.org/10.1016/j.jbiotec.2013.04.015
Yuce-Dursun B, Cigil AB, Dongez D, Kahraman MV, Ogan A, Demir S. (2016). Preparation and characterization of sol-gel hybrid coating films for covalent immobilization of lipase enzyme. J. Mol. Catal. B Enzym., 127: 18-25.
Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, XZ. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B-Enzym., 70: 95-100.
Gupta K, Jana AK, Kumar S, Jana MM. (2015). Solid state fermentation with recovery of Amyloglucosidase from extract by direct immobilization in cross linked enzyme aggregate for starch hydrolysis. Biocatal. Agric. Biotechnol., 4: 486-492. http://dx.doi.org/10.1016/j.bcab.2015.07.007 DOI: https://doi.org/10.1016/j.bcab.2015.07.007
Pahujani S, Kanwar SS, Chauhan G, Gupta R. (2008). Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: Enzyme characteristics and stability. Bioresour. Technol., 99: 2566-2570.
Roy N, Ray L, Chattopadhyay P. (2004). Production of lipase in a fermentor using a mutant strain of Corynebacterium species: Its partial purification and immobilization. Indian J. Exp. Biol., 42: 202-207.
Dosanjh, N S and Kaur, J (2002). Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol. Appl. Biochem., 36: 7-12.