PARAMETER EFFECTS OF PH, DOSAGE AND CONTACT TIME ON BORON REMOVAL FROM SYNTHETIC SEA WATER USING MORINGA OLEIFERA SEEDS

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i2.1203

Keywords:

Optimization, Boron, Sea Water, Moringa oleifera Seeds

Abstract

Boron is one of the key elements required in flora, fauna, as well as human beings. However, human life and eco-systems could be seriously affected when exposed to excessive levels of boron, especially in seawater and groundwater. In this work Moringa oleifera was selected as a precursor adsorbent owing to its eco-friendliness characteristics and favourable removal efficiency of adsorbates. Besides, M. oleifera does not significantly affect the conductivity of water and pH value after the treatment. The main aim of this work was to investigate the potentiality of M. oleifera in the treatment of boron from contaminated saline water. The effect of adsorption parameters such as pH (7 - 9), adsorbent dose of 4000 – 8000 mg/L of solution and contact time of 60 – 180 min was thoroughly investigated. Face-centred Central Composite Design (FCCCD) was applied to optimize these parameters. Consequently, the highest percentage of removal (65%) was achieved at the pH of 8, 120 min of contact time and 6000 mg/L of adsorbent dosage. The adsorption studies stated that the adsorption fitted well with the Freundlich isotherm. Therefore, the outcome of this work revealed that boron could be significantly treated using a prepared adsorbent from M. oleifera.

ABSTRAK: Boron merupakan salah satu elemen yang diperlukan oleh flora, fauna, juga manusia. Walau bagaimanapun, hidup manusia dan ekosistem pasti terkesan apabila di dedahkan secara berlebihan, terutama pada air di lautan dan daratan. Kajian ini menggunakan Moringa oleifera sebagai penjerap kerana ia mempunyai ciri-ciri mesra dan berkesan membuang bahan terjerap dengan berkesan. Selain itu, M. oleifera tidak langsung memberi kesan kepada konduktiviti air dan nilai pH selepas perawatan. Tujuan utama kajian ini adalah mengkaji potensi M. oleifera dalam larutan rawatan air garam boron yang tercemar. Kesan parameter penjerapan seperti pH (7-9), dos penjerapan 4000 – 8000 mg/L larutan dan masa interaksi 60 – 180 minit di kaji dengan teliti. Kaedah Komposisi Tumpuan Tengah Muka (FCCCD) digunakan bagi mengoptimumkan parameter-parameter ini. Hasilnya, peratus tertinggi penyingkiran adalah sebanyak (65%) pada pH 8, 120 min masa interaksi dan 6000 mg/L dos penjerapan. Kesimpulannya, kajian penjerapan ini menyokong kuat teori isoterma Freundlich. Oleh itu, hasil kajian ini menunjukkan boron dapat dirawat dengan menggunakan larutan penjerapan daripada M. oleifera.

Downloads

Download data is not yet available.

References

Princi MP, Lupini A, Araniti F, Longo C, Mauceri A, Sunseri F, Abenavoli MR (2016). Boron Toxicity and Tolerance in Plants: Recent Advances and Future Perspectives. In Plant Metal Interaction, Edited by Parvaiz A. Elsevier; pp 115–147.

Zhang J, Cai Y, Liu, K. (2019). Extremely Effective Boron Removal from Water by Stable Metal Organic Framework ZIF-67. Industrial & Engineering Chemistry Research, 58: 4199–4207. doi.org/10.1021/acs.iecr.8b05656

Khaliq H, Juming Z, Ke-Mei P (2018). The Physiological Role of Boron on Health. Biological Trace Element Research, 186: 31-51. doi:10.1007/s12011-018-1284-3

Guan Z, Lv J, Bai P, Guo X. (2016). Boron removal from aqueous solutions by adsorption - A review. Desalination, 383: 29-37. doi.org/10.1016/j.desal.2015.12.026

Guidelines for drinking-water quality, 2nd ed. Addendum to Vol. 2. Health criteria and other supporting information. (1998) World Health Organization, Geneva.

Kabu M, Akosman M S. (2013). Biological Effects of Boron. Reviews of Environmental Contamination and Toxicology, Edited by Whitacre D M. Springer; pp 57-75. doi:10.1007/978-1-4614-6470-9_2

Tu K L, Nghiem L D, Chivas A R (2010). Boron removal by reverse osmosis membranes in seawater desalination applications. Sep. Purif. Technol, 75: 87-101. doi:10.1016/j.seppur.2010.07.021

Kim BC, Hung P V X, Moon S H (2010). Boron removal from seawater by combined system of seawater reverse osmosis membranes and ion exchange process: a pilot-scale study. Desalination and Water Treatment, 15: 178–182. doi:10.5004/dwt.2010.1683

Kabay N, Bryjak M (2015). Boron Removal from Seawater Using Reverse Osmosis Integrated Processes. In Boron Separation Processes, Elsevier 219–235. doi:10.1016/b978-0-444-63454-2.00009-5

Biniaz P, Torabi Ardekani N, Makarem M, Rahimpour M (2019). Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). ChemEngineering, 3: 1-36. doi:10.3390/chemengineering3010008

Tagliabue M, Reverberi A P, Bagatin R (2014). Boron removal from water: needs, challenges and perspectives. Journal of Cleaner Production, 77: 56-

doi:10.1016/j.jclepro.2013.11.040

Ozturk N, Kavak D (2005). Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Materials, 127: 81-88. doi:10.1016/j.jhazmat.2005.06.026

Yüksel S, Yürüm Y (2009). Removal of Boron from Aqueous Solutions by Adsorption Using Fly Ash, Zeolite, and Demineralized Lignite. Separation Science and Technology, 45: 105-115. doi:10.1080/01496390903256042

Montalvo-Andia J P, Yokoyama L, Cesar Teixeira L A (2018). Study of the Equilibrium, Kinetics, and Thermodynamics of Boron Removal from Waters with Commercial Magnesium Oxide. International Journal of Chemical Engineering, 2018: 1-10. doi:10.1155/2018/6568548.

Wibowo E, Rokhmat M, Abdullah M (2017). Reduction of seawater salinity by natural

zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination,

:146-156. doi.org/10.31436/iiumej.v21i1.1254

Anjorin T B, Ikokoh P, Okolo S (2010). Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. Int. J. Agric. Biol. 12: 431- 434.

Kansal S K, Kumari A (2014). Potential of M. oleifera for the treatment of water and wastewater. Chem Rev.114: 4993-5010. doi: 10.1021/cr400093w

Reddy D H K, Harinatha Y, Seshaiaha K, Reddy A V R (2010). Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem. Eng. J. 162: 626-634.

Camacho F P, Sousa V S, Bergamasco R, Teixeira M R (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Chem. Eng J., 313: 226-237.

Reck I M, Paixão R M, Bergamasco R, Vieira M F, Vieira A M S (2018). Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J. Clean Prod., 171: 85-97.

Zarei A R, Nobakht S, Zaree M A (2012). A New Separation and Preconcentration System Based on Dispersive Liquid-Liquid Microextraction for Spectrophotometric Determination of Trace Amounts of Boron in Water Samples, JTAFD, 1: 1-13.

Ahmad M M, Azoddein A A M, Zahari M A K M, Seman M N bin A, Saedi M J, Olalere O A, Alara O R (2019). Optimization of Process Parameters in Mixed Sulfide Oxidation Bacterial Culture Using Response Surface Methodology as a Tool. Journal of King Saud University, 31: 836 - 843. doi.org/10.1016/j.jksus.2017.11.001

Glass B, Using S, Techniques M B, Shimada K, Kobayashi M, Tominaga G. (2016). Adsorption Study on Moringa Oleifera Seeds and Musa Cavendish as Natural Water Purification Agents for Removal of Lead, Nickel and Cadmium from Drinking Water. IOP Conf. Series: Materials Science and Engineering 136: 1-10. 012044 doi:10.1088/1757-899X/136/1/012044

Mahvi A H, Ghanbarian M, Nasseri S, Khairi A (2009). Mineralization and discoloration of

textile wastewater by TiO2 nanoparticles. Desalination, 239: 309-316.

doi:10.1016/j.desal.2008.04.002

Al Haddabi M, Ahmed M, Al Jebri Z, Vuthaluru H, Znad H, Al Kindi M (2016). Boron removal from seawater using date palm (Phoenix dactylifera) seed ash. Desalination and Water Treatment, 57: 5130–5137. https://doi.org/10.1080/19443994.2014.1000385

Mohammed S J, Nur Syahirah Z, Moussa M A, Mohammed N, Mani M A (2018), Optimization of Process Parameters for Boron Adsorption from Sea Water Using Moringa oleifera Seeds, 5th International Conference on Biotechnology Engineering ICBioE, Kuala Lumpur, Malaysia 19 - 20.

Copello G J, Villanueva M E, González J A, López Egües S, Diaz L E (2014). TEOS as an improved alternative for chitosan beads cross-linking: A comparative adsorption study. Journal of Applied Polymer Science, 131: 1-8. doi.org/10.1002/app.41005

Guan Z, Lv J, Bai P, Guo X (2016). Boron removal from aqueous solutions by adsorption - A review. Desalination, 383: 29-37. doi.org/10.1016/j.desal.2015.12.026

Al Haddabi M, Ahmed M, Al Jebri Z, Vuthaluru H, Znad H, Al Kindi M (2016). Boron removal from seawater using date palm (Phoenix dactylifera) seed ash. Desalination and Water Treatment, 57: 5130 -5137. doi.org/10.1080/19443994.2014.1000385

Masindi V, Gitari M W, Tutu H, Debeer M (2016). Removal of boron from aqueous solution using magnesite and bentonite clay composite. Desalination and Water Treatment, 57: 8754-8764. doi.org/10.1080/19443994.2015.1025849

Downloads

Published

2020-07-04

How to Cite

Jami, M. S., Zakaria, N. S. ., Ahmed, M. ., Nik Abdul Ghani, N. R. ., Ngabura, M. ., & Ahmad, M. M. . (2020). PARAMETER EFFECTS OF PH, DOSAGE AND CONTACT TIME ON BORON REMOVAL FROM SYNTHETIC SEA WATER USING MORINGA OLEIFERA SEEDS. IIUM Engineering Journal, 21(2), 12 - 24. https://doi.org/10.31436/iiumej.v21i2.1203

Issue

Section

Chemical and Biotechnology Engineering

Most read articles by the same author(s)