FINITE ELEMENT SIMULATION OF MEMS PIEZOELECTRIC ENERGY SCAVENGER BASED ON PZT THIN FILM

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i1.991

Keywords:

piezoelectric, finite element simulation, MEMS

Abstract

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz.

ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aliza Aini Md Ralib, IIUM

Assistant Professor at ECE Department

Kulliyyah of Engineering

IIUM

Rosminazuin Ab Rahim

Assistant Professor

ECE Department

Kulliyyah of Engineering

Nor Farahidah Za'bah

Assistant Professor

ECE Department

Kulliyyah of Engineering

IIUM

Noor Hazrin Hany Mohamad Hanif

Assistant Professor

Mechatronics Department

Kulliyyah of Engineering

IIUM

References

Zieliński M, Mieyeville F, Navarro D, Bareille O. (2014). A low power wireless sensor node with vibration sensing and energy harvesting capability. In IEEE Computer Science and Information Systems (FedCSIS), Federated Conference: 7-10 September 2014; Warsaw; pp. 1065-1071.

Wei C, Jing X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74: 1-18. https://doi.org/10.1016/j.rser.2017.01.073 DOI: https://doi.org/10.1016/j.rser.2017.01.073

Khan FU, Qadir MU. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10): 103001. https://doi.org/10.1088/0960-1317/26/10/103001 DOI: https://doi.org/10.1088/0960-1317/26/10/103001

Li P, Gao S, Cai H. (2015). Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsystem Technologies, 21(2): 401-414. https://doi.org/10.1007/s00542-013-2030-6 DOI: https://doi.org/10.1007/s00542-013-2030-6

Siddique ARM, Mahmud S, Van Heyst B. (2015). A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Conversion and Management, 106: 728-747. https://doi.org/10.1016/j.enconman.2015.09.071 DOI: https://doi.org/10.1016/j.enconman.2015.09.071

Priya, S., Song, H. C., Zhou, Y., Varghese, R., Chopra, A., Kim, S. G., ... & Polcawich, R. G. (2017). A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvesting and Systems, 4(1), 3-39. DOI: https://doi.org/10.1515/ehs-2016-0028

Shung KK, Cannata JM, Zhou QF. (2007). Piezoelectric materials for high frequency medical imaging applications: A review. Journal of Electroceramics, 19(1): 141-147. https://doi.org/10.1007/s10832-007-9044-3 DOI: https://doi.org/10.1007/s10832-007-9044-3

Anton SR, Sodano HA. (2007). A review of power harvesting using piezoelectric materials. Smart materials and Structures, 16(3): R1. https://doi.org/10.1088/0964-1726/16/3/R01 DOI: https://doi.org/10.1088/0964-1726/16/3/R01

Ralib, A. A. M., Nordin, A. N., & Salleh, H. (2010). A comparative study on MEMS piezoelectric microgenerators. Microsystem technologies, 16(10), 1673-1681. https://doi.org/10.1007/s00542-010-1086-9 DOI: https://doi.org/10.1007/s00542-010-1086-9

Ramadan KS, Sameoto D, Evoy S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3): 033001.

Kim HU, Lee WH, Dias HR, Priya S. (2009). Piezoelectric microgenerators-current status and challenges. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(8),1555-1568. https://doi.org/10.1109/TUFFC.2009.1220 DOI: https://doi.org/10.1109/TUFFC.2009.1220

Kim HS, Kim JH, Kim J. (2011). A review of piezoelectric energy harvesting based on vibration. International journal of precision engineering and manufacturing, 12(6): 1129-1141. https://doi.org/10.1007/s12541-011-0151-3 DOI: https://doi.org/10.1007/s12541-011-0151-3

Downloads

Published

2019-06-01

How to Cite

Md Ralib, A. A., Zulfakher, N. W. A., Ab Rahim, R., Za’bah, N. F., & Mohamad Hanif, N. H. H. (2019). FINITE ELEMENT SIMULATION OF MEMS PIEZOELECTRIC ENERGY SCAVENGER BASED ON PZT THIN FILM. IIUM Engineering Journal, 20(1), 90–99. https://doi.org/10.31436/iiumej.v20i1.991

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.