AN AN INVESTIGATION OF THE SENSITIVITY OF POLYMER-COATED SURFACE ACOUSTIC WAVE-BASED GAS SENSORS IN THE DETECTION OF VOLATILE ORGANIC COMPOUNDS
DOI:
https://doi.org/10.31436/iiumej.v22i2.1612Keywords:
surface acoustic wave, gas sensor, polymer sensing layer, sensitivity, frequency shiftAbstract
Surface acoustic wave sensors (SAWs) are excellent at detecting volatile organic compounds (VOCs) since a sensing layer can be created by spreading a thin film of material across the delay line. This critically enhances performance as it is sensitive to the physical phenomena of interest. This study aims to provide a thorough investigation of the sensitivity of polymer-coated SAW-based gas sensors to VOCs using simulations via the finite element method (FEM). As such, quartz was chosen as the piezoelectric substrate while polymeric materials were chosen as the sensing layers due to their high sensitivity, low energy consumption, short response time, performance at room temperature, and reversibility after exposure to an analyte. The polymeric materials chosen were: (1) polyisobutylene (PIB), (2) polydimethylsiloxane (PDMS), (3) polyisoprene (PIP), (4) polyimide (PI), and (5) phenylmethyldiphenylsilicone (OV25). The VOCs chosen for investigation were: (1) dichloromethane (DCM), (2) trichloroethylene (TCE), (3) 1,2-dichloroethylene (DCE), and (4) carbon tetrachloride (CCl4). The performance of each polymer-coated SAW sensor was evaluated in terms of frequency shift and sensitivity to each VOC in FEM simulations. Our study found that the PIB-coated sensor had the highest sensitivity (4.0571 kHz/ppm) to DCM vapor and good sensitivity (45.257 kHz/ppm) to TCE vapor. However, the performance of each polymer-coated sensor varied depending on the type of VOC being tested. As an example, while the OV25-coated sensor was more sensitive (52.57 kHz/ppm) than the PIB-coated sensor (53.54 kHz/ppm) to TCE vapor regardless of the concentration, the PIB-coated sensor was more sensitive to DCM vapor at both low (4.06 kHz/ppm) and high (3.54 kHz/ppm) concentrations than the OV25-coated sensor. Therefore, the results of our FEM simulations indicate that polymer-coated SAW-based gas sensors are highly capable of self-powered VOC detection.
ABSTRAK: Sensor gelombang akustik permukaan (SAW) adalah sangat baik dalam mengesan sebatian organik meruap yang tidak stabil (VOCs), kerana lapisan pengesan dapat dihasilkan dengan melapis nipis bahan pada lapisan garis tunda. Cara ini dapat menambah baik prestasi kerana ianya sensitif kepada fenomena fizikal yang dituju. Kajian ini bertujuan bagi menyediakan kajian menyeluruh terhadap kesensitifan sensor gas berasaskan SAW bersalut polimer pada VOC menggunakan simulasi melalui kaedah unsur terhingga (FEM). Oleh itu, kuarza dipilih sebagai substrat piezoelektrik manakala bahan polimer dipilih sebagai lapisan penginderaan berdasarkan kepekaan tinggi, penggunaan tenaga rendah, respon masa singkat, prestasi suhu bilik, dan faktor keboleh-balikan setelah terdedah kepada analit. Bahan polimer yang dipilih adalah: (1) polisobutilena (PIB), (2) polidimethilsiloxana (PDMS), (3) polisoprena (PIP), (4) polimida (PI), dan (5) phenilmethildiphenilsilikon (OV25). VOC terpilih bagi kajian adalah: (1) diklorometana (DCM), (2) trikloretilena (TCE), (3) 1,2-dikloroetilena (DCE), dan (4) karbon tetraklorida (CCl4). Prestasi setiap sensor SAW bersalut polimer dinilai berdasarkan peralihan frekuensi dan kesensitifan pada setiap VOC simulasi FEM. Dapatan kajian menunjukkan sensor bersalut-PIB mempunyai kesensitifan paling tinggi (4.0571 kHz/ppm) terhadap wap DCM dan kepekaan yang baik (45.257 kHz / ppm) terhadap wap TCE. Walau bagaimanapun, prestasi setiap sensor bersalut polimer adalah berbeza bergantung kepada jenis VOC yang sedang diuji. Sebagai contoh, sensor bersalut OV25 adalah lebih sensitif (52,57 kHz/ppm) daripada sensor bersalut PIB (53,54 kHz/ppm) pada wap TCE tanpa mengira kepekatan. Manakala sensor bersalut PIB lebih sensitif terhadap wap DCM pada kedua-dua kepekatan rendah (4.06 kHz/ppm) dan tinggi (3.54 kHz/ppm) daripada sensor bersalut-OV25. Oleh itu, hasil simulasi FEM menunjukkan bahawa sensor gas berasaskan SAW bersalut polimer adalah sangat berpotensi sebagai pengesan VOC berkuasa sendiri.
Downloads
Metrics
References
Kim ID, Choi SJ, Kim SJ, Jang JS. (2015) Exhaled Breath Sensors. in: Kyung CM. (eds) Smart Sensors for Health and Environment Monitoring. KAIST Research Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9981-2_2 DOI: https://doi.org/10.1007/978-94-017-9981-2_2
Lee BC, Tward DJ, Mitra PP, Miller MI. (2018) On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model. PLoS Comput Biol 14(12): e1006610. https://doi.org/10.1371/journal.pcbi.1006610 DOI: https://doi.org/10.1371/journal.pcbi.1006610
Wang C, Sahay P. (2009) Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors (Basel, Switzerland), 9(10): 8230-8262. https://doi.org/10.3390/s91008230 DOI: https://doi.org/10.3390/s91008230
Kim KH, Jahan SA, Kabir E. (2012) A review of breath analysis for diagnosis of human health. TrAC Trends in Analytical Chemistry, 33: 1-8. DOI: https://doi.org/10.1016/j.trac.2011.09.013
Afzal A, Iqbal N, Mujahid A, Schirhagl R. (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Analytica Chimica Acta, 787: 36-49. DOI: https://doi.org/10.1016/j.aca.2013.05.005
Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors 2018, 18, 1687. https://doi.org/10.3390/s18061687 DOI: https://doi.org/10.3390/s18061687
Ralib AAM, Nordin AN, Salleh H. (2010) A comparative study on MEMS piezoelectric microgenerators. Microsystem Technologies, 16(10): 1673-1681. DOI: https://doi.org/10.1007/s00542-010-1086-9
Arshak, K., Moore, E., Lyons, G.M., Harris, J. and Clifford, S. (2004), "A review of gas sensors employed in electronic nose applications", Sensor Review, Vol. 24 No. 2, pp. 181-198. https://doi.org/10.1108/02602280410525977 DOI: https://doi.org/10.1108/02602280410525977
Hazadi AHF, Ralib AAM, Saidin N. (2018) Design and Simulation of Electroacoustic Sensor for exhaled breath analysis. in 2018 7th International Conference on Computer and Communication Engineering (ICCCE) pp. 388-391. DOI: https://doi.org/10.1109/ICCCE.2018.8539332
Mujahid, A.; Dickert, F.L. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers. Sensors 2017, 17, 2716. https://doi.org/10.3390/s17122716 DOI: https://doi.org/10.3390/s17122716
Choi, K., Kim, H., Ali, K. et al. Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films. Sci Rep 5, 15178 (2015). https://doi.org/10.1038/srep15178 DOI: https://doi.org/10.1038/srep15178
Lukose V, Nemade HB. (2019) Finite element simulation of one-port surface acoustic wave resonator with thick interdigital transducer for gas sensing. Microsystem Technologies, 25(2): 441-446. DOI: https://doi.org/10.1007/s00542-018-4015-y
Haresh M., Pandya, (2010) Design and Modelling of Surface Acoustic Wave (SAW) Devices and Sensors", Ph.D. Thesis, Bharathiar University, Coimbatore: 8.
Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. (2012) A survey on gas sensing technology. Sensors, 12(7): 9635-9665. DOI: https://doi.org/10.3390/s120709635
Zhao YG, Liu,M, Li DM, Li JJ, Niu JB. (2009) FEM modeling of SAW organic vapor sensors. Sensors and Actuators A: Physical, 154(1): 30-34. DOI: https://doi.org/10.1016/j.sna.2009.07.014
Johnson S, Shanmuganantham T. (2014) Design and analysis of SAW based MEMS gas sensor for the detection of volatile organic gases. Carbon, 119(5): 0-041316.
Sayago I, Fernández MJ, Fontecha JL, Horrillo MC, Vera C, Obieta I, Bustero I. (2012) New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sensors and Actuators B: Chemical, 175: 67-72. DOI: https://doi.org/10.1016/j.snb.2011.12.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.