piezoelectric, energy harvester, hybrid kinetic motion, magnetically plucked


ABSTRACT: Piezoelectric energy harvesting is a possible breakthrough to reduce the global issue of electronic waste as they can efficiently convert the ambient vibration to the electrical energy without any additional power. This work presents the design and development of a piezoelectric energy harvester that is capable of transforming vibration from ambient sources into electricity. It focuses on a magnetically plucked piezoelectric beam as an alternative to the mechanically induced harvesters, as the latter are subjected to wear and tear. A prototype comprising of a 40 mm PZT-5H piezoelectric beam with a permanent magnet mounted at one end of the beam, as well as a series of permanent magnets of same types attached on an eccentric rotor was developed along with a National Instruments® data acquisition device. Mean output voltages of 2.98 V, 1.76 V and 0.34 V were recorded when the eccentric rotors were slowly rotated at 8.4 rad/s with increasing distances of 5 mm, 7.5 mm and 10 mm respectively, between the magnets on the rotor and the beam. These results have proven that voltage could also be generated by magnetically plucking the piezoelectric beam, and by reducing the distance between magnets, the amount of voltage generated will be higher. The outcome of this work signifies the possibility for implementation of energy harvesters that are capable of powering electronic devices from hybrid kinetic motion, with a reduced risk of equipment fatigue.

ABSTRAK: Penjanaan tenaga melalui piezoelektrik adalah satu penemuan terbesar dalam mengurangkan isu global pengurusan sisa elektronik. Ini kerana ia berupaya mengubah getaran persekitaran kepada tenaga elektrik tanpa sebarang tambahan tenaga. Kajian ini berkenaan reka bentuk dan pembangunan penjana tenaga piezoelektrik yang mampu mengubah getaran persekitaran kepada elektrik. Fokus kajian adalah pada penjanaan tenaga secara magnetik dari bilah piezoelektrik sebagai alternatif kepada penjanaan mekanikal, kerana penjanaan tenaga secara mekanikal berisiko tinggi kepada kerosakan alat dalam jangkamasa panjang. Prototaip piezoelektrik PZT-5H yang berukuran 40 mm ini telah dilengkapi magnet kekal pada hujung bilah, serta satu siri magnet kekal jenis sama turut dipasang pada pemutar eksentrik bersama peranti pengambilan data National Instruments®. Secara purata, sebanyak 2.98 V, 1.76 V dan 0.34 V voltan output telah direkodkan ketika pemutar eksentrik berputar perlahan pada 8.4 rad/s dengan jarak tambahan antara magnet pemutar dan bilah piezoelektrik bersamaan 5 mm, 7.5 mm dan 10 mm, masing-masing. Keputusan menunjukkan tenaga dapat dihasilkan dengan cara pemacuan piezoelektrik secara magnetik, dan tenaga yang terhasil akan bertambah dengan pengurangan jarak antara magnet. Hasil kerja menunjukkan tenaga dapat dihasilkan daripada gerakan kinetik hibrid, dengan risiko rendah pada kerosakan alat.


Download data is not yet available.


Priya S. (2007) Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceramics, 19(1):165-182. DOI:

Poulin G, Sarraute E, Costa F. (2004). Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system. Sensors Actuators A Phys, 116(3): 461-471.

Pozzi M, Zhu M. (2011). Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation. Smart Mater. Struct., 20(5): 1-16.

Pozzi M, Almond HJ, Leighton GJ, Morirarty RJ. (2015). Low-profile and wearable energy harvester based on plucked piezoelectric cantilevers. In Proceedings of Smart Sensors, Actuators, and MEMS VII: 4 - 6 May 2015; Barcelona. Edited by José L. Sánchez-Rojas, Riccardo Brama; pp 1-9.

Kuang Y, Zhu M. (2017). Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling. Sensors Actuators, A Phys., 263:510-520.

Kuang Y, Yang Z, Zhu M. (2016). Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking. Smart Mater. Struct., 25(8): 1-13.

Kuang Y, Ruan T, Chew ZJ, Zhu M. (2017) Energy harvesting during human walking to power a wireless sensor node. Sensors Actuators, A Phys., 254: 69-77.

Yeatman EM. Holmes AS, Pillatsch P. (2012) A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Mater. Struct., 21(11). DOI:

Asneh AGMA, Muthalif AGA, Wahid AN, JazlanA, Mohamad Hanif NHH. (2017) Piezoelectric based Broadband Nonlinear Vibration Energy Harvester using Multiple Magnets. Int. J. Ind. Electron. Electr. Eng., 5(12): 47-51.

Arnold DP. (2007) Review of microscale magnetic power generation IEEE Trans. Magn., 43(11): 3940-3951.

Pillatsch P, Yeatman EM, Holmes AS. (2013). A wearable piezoelectric rotational energy harvester. In Proceedings of IEEE Int. Conf. Body Sens. Networks: 6-9 May 2013; Cambridge, MA.

Mohamad Hanif NHH, Jazlan Mohaideen A, Azam H, Rohaimi ME. (2018) Rotational piezoelectric energy harvester for wearable devices. Cogent Eng., 5(1):1-11. DOI:

Mohamad Hanif NHH, Zain MZ, Rohaimie ME, Azam H. (2017). Power Estimation for Wearable Piezoelectric Energy Harvester. Telkomnika, 15(4): 101-106.

Pozzi M. (2016). Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester. Smart Mater. Struct., 25(4): 045008. doi: 10.1088/0964-1726/25/4/045008. DOI:

Pozzi M, Zhu M. (2012). Characterization of a rotary piezoelectric energy harvester based on plucking excitation for knee-joint wearable applications. Smart Mater. Struct., 21(5): 05504.

Lefeuvre E, Audigier D, Richard C, Guyomar D. (2007). Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Trans. Power Electron., 22(5): 2018-2025.

H. Li, C. Tian, and Z. D. Deng. (2014). Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev., 1(4): 041301.

Ralib AAM, Nordin AN, Salleh H. (2010). A comparative study on MEMS piezoelectric microgenerators. Microsyst Technol., 16(10):1673-1681.

Graham BB. (2000). Using an Accelerometer Sensor to Measure Human Hand Motion. BSc. and MEng. thesis. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.

Ottman GK, Hoffman HF, Lesieutre GA. (2002). Optimized Piezoelectric Energy Harvesting Circuit Using Step- down Converter in Discontinous Conduction Mode. IEEE Transducers Power Electron., 17(5):696-703.

Hamid R, Yuce MR. (2017). A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sensors Actuators, A Phys., 257: 198-207.

Kwon DS, Ko HJ, Kim J. (2017). Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion. In Proceedings of IEEE Int. Conf. Micro Electro Mech. Syst.: 22-26 Jan 2017; Las Vegas. pp. 49–52.

Li P, Gao S, Cai H. (2013). Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst. Technol., 21(2):401-414.




How to Cite

Azam, H., Mohamad Hanif, N. H. H., & Md Ralib, A. A. (2019). MAGNETICALLY INDUCED PIEZOELECTRIC ENERGY HARVESTER VIA HYBRID KINETIC MOTION. IIUM Engineering Journal, 20(1), 245 - 257.



Mechatronics and Automation Engineering

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.