MAXIMIZING OUTPUT VOLTAGE OF A PIEZOELECTRIC ENERGY HARVESTER VIA BEAM DEFLECTION METHOD FOR LOW-FREQUENCY INPUTS

Authors

  • Mohamad Safiddin Mohd Tahir
  • Noor Hazrin Hany Mohamad Hanif International Islamic University Malaysia https://orcid.org/0000-0003-3131-2675
  • Azni Nabela Wahid

DOI:

https://doi.org/10.31436/iiumej.v23i1.2156

Keywords:

energy harvesting, piezoelectric, magnetic plucking, random frequency, beam deflection

Abstract

 In micro-scale energy harvesting, piezoelectric (PZT) energy harvesters can adequately convert kinetic energy from ambient vibration to electrical energy. However, due to the random motion and frequency of human motion, the piezoelectric beam cannot efficiently harvest energy from ambient sources. This research highlights the ability of piezoelectric energy harvester constructed using a PZT-5H cantilever beam to generate voltage at any input frequency from human motion. An eccentric mass is used to convert the linear motion of human movement to angular motion. Then, using a magnetic plucking technique, the piezoelectric beam is deflected to its maximum possible deflection each time the eccentric mass oscillates past the beam, ensuring the highest stress is induced and hence the highest current is generated. For testing works, the frequency of oscillation of the eccentric mass is controlled using an Arduino Uno microcontroller. In this work, it is found that when given any input frequencies, the energy harvester produced a consistent AC voltage peak around 5.8 Vac. On the other hand, the DC voltage produced varies with respect to the input frequency due to the number of times the peak AC signal is generated. The highest DC voltage produced in this work is 3.7 Vdc, at 5 Hz, which is within the frequency range of human motion. This research demonstrated that energy can still be effectively harvested at any given low-frequency input, in the condition that the piezoelectric beam is being deflected at its maximum.

ABSTRAK: Piezoelektrik dapat mengubah tenaga kinetik daripada getaran persekitaran kepada tenaga elektrik melalui penjanaan tenaga berskala mikro. Namun, PZT tidak dapat menjana tenaga dengan berkesan dari sumber persekitaran kerana pergerakan dan kekerapan pergerakan manusia adalah rawak. Kajian ini adalah mengenai keupayaan penuai tenaga piezoelektrik menggunakan bilah kantilever PZT-5H bagi menjana voltan pada sebarang frekuensi menerusi gerakan manusia. Jisim eksentrik digunakan bagi menukar gerakan linear manusia kepada gerakan putaran. Kemudian, teknik penjanaan piezoelektrik secara magnetik digunakan bagi memesongkan bilah piezoelektrik ke tahap maksimum. Bagi memastikan tenaga tertinggi dihasilkan, jisim eksentrik perlu berayun melepasi bilah PZT. Ayunan frekuensi jisim eksentrik ini dikawal melalui kawalan mikro Arduino Uno. Dapatan kajian menunjukkan bagi setiap frekuensi input, PZT ini dapat menghasilkan voltan AC yang konsisten, iaitu sekitar 5.8 Vac. Namun, voltan DC maksimum yang terhasil adalah berbeza-beza bagi setiap frekuensi input, iaitu berdasarkan bilangan kekerapan maksimum isyarat AC yang terhasil. Voltan DC tertinggi ialah 3.7 Vdc, pada 5 Hz, iaitu pada kadar frekuensi gerakan manusia. Ini menunjukkan bahawa tenaga masih dapat dihasilkan secara berkesan pada frekuensi rendah, dengan syarat bilah piezoelektrik terpesong pada tahap maksimum.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Pillatsch P, Yeatman EM, Holmes AS. (2013) A wearable piezoelectric rotational energy harvester. In Proceedings of IEEE Internatinal Conference Body Sensor Networks: 6-9 May 2013; Cambridge, pp 1-6. DOI: https://doi.org/10.1109/BSN.2013.6575470

Huda A, Noor Hazrin Hany MH, Aliza Aini MR. (2019) Magnetically plucked piezoelectric energy harvester via hybrid kinetic motion. IIUM Engineering Journal, 20(1): 245-257.

doi: 10.31436/iiumej.v20i1.981. DOI: https://doi.org/10.31436/iiumej.v20i1.981

Fan PMY, Wong OY, Chung MJ, Su TY, Zhang X, Chen PH. (2015) Energy harvesting techniques: energy sources, power management and conversion. In Proceedings of European Conference on Circuit Theory and Design: 24-26 August 2015; Trondeim, pp 1-6. DOI: https://doi.org/10.1109/ECCTD.2015.7300104

Nguyen S, Amirtharajah R. (2018) A hybrid RF and vibration energy harvester for wearable devices. In proceedings of IEEE Applied Power Electronics Conference and Exposition: 4-8 March 2018; San Antonio, pp. 1060–1064. DOI: https://doi.org/10.1109/APEC.2018.8341146

Sang Y, Huang X, Liu H, Jin P. (2012) A vibration-based hybrid energy harvester for wireless sensor systems. IEEE Tranactions on Magnetics, 48(11): 4495-4498.

doi: 10.1109/TMAG.2012.2201452. DOI: https://doi.org/10.1109/TMAG.2012.2201452

Pillatsch P, Yeatman EM, Holmes AS. (2012) A scalable piezoelectric impulse excited energy harvester for human body excitation. Smart Materials and Structures, 21(11): 1-9.

doi: 10.1088/0964-1726/21/11/115018. DOI: https://doi.org/10.1088/0964-1726/21/11/115018

Mohd Fauzi AR, Kok SL, Noraini MA, R. Affendi, Khairul Azha AA. (2013) Hybrid vibration energy harvester based on piezoelectric and electromagnetic transduction mechanism. In Proceedings of the IEEE Conference Clean Energy Technology: 18-20 November 2013; Langkawi, pp 1–5.

Fan K, Tan Q, Liu H, Zhu Y, Wang W, Zhang D. (2018) Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Materials and Structures, 27(8): 1-28. doi: 10.1088/1361-665X/aaae92. DOI: https://doi.org/10.1088/1361-665X/aaae92

Anton SR, Sodano HA. (2007) A review of power harvesting using piezoelectric materials (2003-2006). Smart Materials and Structures, 16(3): R1-R21.

doi: 10.1088/0964-1726/16/3/R01. DOI: https://doi.org/10.1088/0964-1726/16/3/R01

Haitao L, Weiyang Q, Chunbo L, Wangzheng D, Zhiyong Z. (2015) Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Materials and Structures, 25(1):1-10. doi: 10.1088/0964-1726/25/1/015001. DOI: https://doi.org/10.1088/0964-1726/25/1/015001

Quantification of Arm Swing during Walking in Healthy Adults and Parkinson ’ s Disease Patients?: and Validation [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685089/].

Is the Relationship Between Stride Length, Frequency and Velocity Influenced by Running on a Treadmill or Overground?? [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685089/].

Gu L, Livermore C. (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Materials and Structures, 20(4):1-10. doi: 10.1088/0964-1726/20/4/045004. DOI: https://doi.org/10.1088/0964-1726/20/4/045004

Pozzi M. (2016) Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester. Smart Materials and Structures, 25(4):1-12. doi: 10.1088/0964-1726/25/4/045008. DOI: https://doi.org/10.1088/0964-1726/25/4/045008

Rubes O, Hadas Z. (2018) Design and simulation of bistable piezoceramic cantilever for energy harvesting from slow swinging movement. In Proceedings of IEEE 18th International Conference Power Electronics and Motion Control: 26-30 August 2018; Budapest, pp 1-6. DOI: https://doi.org/10.1109/EPEPEMC.2018.8521846

Noor Hazrin Hany MH, Ahmad Jazlan M, Huda A, Mas Ehsan R. (2018) Rotational piezoelectric energy harvester for wearable devices. Cogent Engineering, 5(1): 1-11.

doi: 10.1080/23311916.2018.1430497. DOI: https://doi.org/10.1080/23311916.2018.1430497

Cheng X, Wu J, Lou X, Wang X. (2014) Achieving both giant d33 and high TC in patassium-sodium niobate ternary system. ACS Applied Materials and Interfaces, 6(2): 1-7.

doi: 10.1021/am404793e DOI: https://doi.org/10.1021/am404793e

Tian W, Ling Z, Yu W, Shi J. (2018) A review of MEMS scale piezoelectric energy harvester. Applied Sciences, 8(4): 1-20. doi: 10.3390/app8040645. DOI: https://doi.org/10.3390/app8040645

Gao S, Ao H, Jiang H. (2019) Properties and performance of general piezoelectric materials on a novel cantilevered energy harvester. In Proceedings of 7th Annual International Conference on Materials Science and Engineering: 19-20 April 2019; Hubei, pp 1-8. DOI: https://doi.org/10.1088/1757-899X/562/1/012098

Steminc Steriner & Martins Inc [https://www.steminc.com/PZT/en/piezo-ceramic-bimorph-40x10x05mm-2-khz].

V. Piefort (2001) Finite element modelling of piezoelectric active structures. PhD thesis. Universit´e Libre de Bruxelles, Faculty of Applied Sciences.

Mohamad Safiddin MT, Noor Hazrin Hany MH, Muhammad Hafizuddin CK. (2021) Performance measurement of piezoelectric energy harvester with permanent magnet assembly for wearable devices. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference: 17-20 May 2021; Glasgow, pp 1–5.

Von Büren T, Mitcheson PD, Green TC, Yeatman EM, Holmes AS, Tröster G. (2006) Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 6(1): 28-38. doi: 10.1109/JSEN.2005.853595. DOI: https://doi.org/10.1109/JSEN.2005.853595

Muhammad Aiman ZA, Noor Hazrin Hany MH, and Mohamad Safiddin MT. (2021) Energy storage system for dual energy harvester for wearable or portable devices. In Proceedings of 8th International Conference Computer and Communication Engineering: 22-23 June 2021; Kuala Lumpur, pp 135-139.

M. Rhimi. (2013) Power management and damage assessment techniques for self-powered sensing based on piezoelectric. PhD Dissertation. University of Michigan, Civil Engineering Department.

Vishnu Sidharthan P, Bhasker MU, Korla S, Chandrasekhar MS. (2018) Energy harvesting of synchronized switch harvesting on inductor. In Proceedings of International Conference Recent Innovations in Electrical Electronics and Communication Engineering: 27-28 July 2018; Bhubaneswar, pp 2282-2887.

Downloads

Published

2022-01-04

How to Cite

Mohd Tahir, M. S., Mohamad Hanif, N. H. H., & Wahid, A. N. (2022). MAXIMIZING OUTPUT VOLTAGE OF A PIEZOELECTRIC ENERGY HARVESTER VIA BEAM DEFLECTION METHOD FOR LOW-FREQUENCY INPUTS. IIUM Engineering Journal, 23(1), 434–446. https://doi.org/10.31436/iiumej.v23i1.2156

Issue

Section

Mechatronics and Automation Engineering

Funding data

Most read articles by the same author(s)