AN IMMERSIVE AUGMENTED REALITY SYSTEM TO STUDY THE EFFICIENCY OF DYNAMIC EXIT SIGNAGE

Authors

  • Azhar Mohd Ibrahim International Islamic University Malaysia https://orcid.org/0000-0003-3294-2249
  • Muhammad Arif Kamaruddin International Islamic University Malaysia image/svg+xml
  • Azni Nabela Wahid international islamic university malaysia

DOI:

https://doi.org/10.31436/iiumej.v23i1.2053

Keywords:

Immersive Augmented Reality, Dynamic Exit Signage, Evacuation, Fire Building

Abstract

Every year, many disasters occur to buildings causing their destruction and leading to huge casualties. One way of preventing casualties is by evacuation drill activity. Although accurate evacuation drills could enhance the efficiency of the process during the real event, these drills are not fully effective because participants miss the sense of being stressed or under pressure while in action. Several gaming concepts have been introduced to train the participants on how to cope with and evacuate effectively during an emergency. For instance, Augmented Reality (AR) and Virtual Reality (VR) interfaces could provide virtual content to enhance the effectiveness of evacuation drills. However, accurate representation of different evacuation scenarios and its impact analysis during emergency using the above technologies are still debatable, mainly due to immersion quality. Thus, this study proposes an Immersive Augmented Reality (IAR) application that is mainly the amalgamation of AR and VR in realizing fast and safe evacuation during on-site building emergencies. A virtual dynamic exit signage system is also developed in the proposed “Smart Evacuation application“. This work evaluated the efficiency of a virtual dynamic exit signage and also a proposed “Smart Evacuation“ system by analysing on-site emergency evacuation processes. By setting up various scenarios imitating real life disasters, this research analysed the time taken and level of stress of the occupants during the evacuation of a chosen site. The proposed “Smart Evacution“ achieved 33.82% better perfomance compared to normal evacuation thus indicating a faster and safer evacuation.

ABSTRAK: Secara statistik, kebanyakan bencana kemusnahan bangunan yang berlaku setiap tahun telah menyebabkan kerugian besar. Salah satu cara bagi mengelak kejadian ini adalah melalui aktiviti latih tubi evakuasi. Walaupun latih tubi evakuasi ini dapat menambah proses kecekapan semasa kejadian sebenar, latih tubi ini tidak benar-benar berkesan kerana peserta kurang mendalami perasaan tertekan atau di bawah tekanan semasa kejadian. Pelbagai konsep permainan telah diperkenalkan bagi melatih peserta bagaimana perlu bertindak dan evakuasi secara efektif semasa kecemasan. Sebagai contoh, antarmuka Realiti Terimbuh (AR) dan Realiti Maya (VR) mungkin dapat menghasilkan simulasi secara maya bagi menambah keberkesanan latih tubi evakuasi. Walau bagaimanapun, ketepatan representasi pelbagai senario evakuasi dan analisis tekanan semasa kecemasan menggunakan teknik-teknik di atas adalah masih boleh dipertikaikan terutama kerana kualiti kedalamannya. Oleh itu, kajian ini mencadangkan aplikasi Realiti Terimbuh Mendalam (IAR) di mana tumpuan adalah pada kombinasi AR dan VR dibuat dengan secara evakuasi pantas dan selamat semasa kecemasan pada bangunan kejadian. Sistem maya penunjuk arah keluar dinamik turut dicipta dalam “Aplikasi Evakuasi Pintar” yang dicadangkan ini. Kajian ini menilai keberkesanan sistem maya penunjuk arah keluar secara dinamik dan juga sistem “Evakuasi Pintar” dengan menganalisa proses evakuasi kecemasan pada tempat kejadian. Dengan mengadakan pelbagai jenis senario dan meniru bencana sebenar, kajian ini menganalisa masa yang diambil dan tahap tekanan penghuni bangunan semasa proses evakuasi berlaku pada tapak pilihan. “Evakuasi Pintar” ini mencapai 33.82% keberkesanan pada prestasi berbanding evakuasi biasa. Ia membuktikan proses evakuasi ini lebih pantas dan selamat.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ESW exit sign warehouse. Available: https://www.exitsignwarehouse.com/pages/exit-sign-regulations-requirements.

Hui X, Galea ER, Lawrence PJ (2014). Experimental and survey studies on the effectiveness of dynamic signage systems. Fire Safety Science, 11: 1129-1143. doi: 10.3801/IAFSS.FSS.11-1129. DOI: https://doi.org/10.3801/IAFSS.FSS.11-1129

Civilian fire fatalities in residential buildings (2008-2010). Available: https://nfa.usfa.fema.gov/downloads/pdf/statistics/v13i1.pdf.

Wang F, Lu S, Li C (2005). Analysis of fire statistics of China: Fire frequency and fatalities in fires. In Proceedings of the eighth international symposium on fire safety science, IAFSS: 353-362. doi: 10.3801/IAFSS.FSS.8-353. DOI: https://doi.org/10.3801/IAFSS.FSS.8-353

Tan YR, Akashah FW, Mahyuddin N (2012). The analysis of fire losses and characteristics of residential fires based on investigation data in Selangor. In MATEC Web of Conferences, 66: 00109. DOI: https://doi.org/10.1051/matecconf/20166600109

Kinateder M, Wirth TD, Warren WH (2018). Crowd dynamics in Virtual Reality. Crowd Dynamics, 1: 15-36. DOI: https://doi.org/10.1007/978-3-030-05129-7_2

Warren WH (2018). Collective motion in human crowds. Current directions in psychological science, 27(4): 232-240. DOI: https://doi.org/10.1177/0963721417746743

Nizam M, Ibrahim AM (2020). Augmented Reality-Based Evacuation Simulation To Study Crowd Behaviors. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(10): 374-383.

Ibrahim AM, Saifullah M, Romlay MRM, Venkat I (2019). Hybrid Social Force-Fuzzy Logic Evacuation Simulation Model for Multiple Exits. In 2019 7th International Conference on Mechatronics Engineering (ICOM): 1-5. DOI: https://doi.org/10.1109/ICOM47790.2019.8952063

Chen X (2006). Microsimulation of evacuation strategies. Ph.D. thesis, Texas State University San Marcos.

Li X, Yi W, Chi HL, Wang X, Chan APC (2018). A critical review of virtual and augmented reality (vr/ar) applications in construction safety. Automation in Construction, 86: 150-152. DOI: https://doi.org/10.1016/j.autcon.2017.11.003

Ahn J, Han R (2012). An indoor augmented-reality evacuation system for the Smartphone using personalized Pedometry. Human-Centric Computing and Information Sciences, 2(1): 1-23. doi: 10.1186/2192-1962-2-18. DOI: https://doi.org/10.1186/2192-1962-2-18

Stigall J, Sharma S (2019). Evaluation of mobile augmented reality application for building evacuation. In Proceedings of 28th International Conference, 64: 109-118.

Lochhead I, Hedley N (2019). Mixed reality emergency management: bringing virtual evacuation simulations into real-world built environments. International journal of digital earth, 12(2): 190-208. doi: 10.1080/17538947.2018.1425489. DOI: https://doi.org/10.1080/17538947.2018.1425489

Feng Z, González VA, Amor R, Spearpoint M, Thomas J, Sacks R, Lovreglio R, Cabrera-Guerrero G (2020). An immersive virtual reality serious game to enhance earthquake behavioral responses and post-earthquake evacuation preparedness in buildings. Advanced Engineering Informatics, 45: 101118. DOI: https://doi.org/10.1016/j.aei.2020.101118

Kristinsson KV (2015). Social Navigation in Unity 3D. M.Sc. Project Report, Reykjavík University.

van den Berg J, Guy SJ, Lin M, Manocha D (2012). Reciprocal collision avoidance for multiple mobile robots. In IEEE International Conference on Robotics and Automation: pp. 1–16.

Bohannon RW, Andrews AW (2011). Normal walking speed: a descriptive meta-analysis. Physiotherapy, 97(3): 182-189. DOI: https://doi.org/10.1016/j.physio.2010.12.004

Pilet J (2008). Augmented reality for non-rigid surfaces. Doctoral Dissertation. Available: http://www.hvrl.ics.keio.ac.jp/~julien/publi/PiletPhd.pdf.

Fiala M (2007). Magic mirror system with hand-held and wearable augmentations. In 2007 IEEE Virtual Reality Conference: 251-254. DOI: https://doi.org/10.1109/VR.2007.352493

Wu C, Yang Z, Xu Y, Zhao Y, Liu Y (2014). Human mobility enhances global positioning accuracy for mobile phone localization. IEEE Transactions on Parallel and Distributed Systems, 26(1): 131-141. DOI: https://doi.org/10.1109/TPDS.2014.2308225

Poon SL (2014). A dynamic approach to ASET/RSET assessment in performance based design. Procedia Engineering, 71: 173-181. DOI: https://doi.org/10.1016/j.proeng.2014.04.025

Cooper LY (1983). A concept for estimating available safe egress time in fires. Fire Safety Journal, 5(2): 135-144. DOI: https://doi.org/10.1016/0379-7112(83)90006-1

Alarifi AAS, Phylaktou HN, Andrews GE (2016). What kills people in a fire? heat or smoke? In the 9th Saudi Students Conference, University of Leeds. Available: https://eprints.whiterose.ac.uk/96795/1/Alarifi%20SSC9%20What%20Kills%20people%20in%20a%20Fire%20Heat%20or%20Smoke%20(final%20version)%20-corrected.pdf.

Downloads

Published

2022-01-04

How to Cite

Mohd Ibrahim, A. ., Kamaruddin, M. A., & Wahid, A. N. (2022). AN IMMERSIVE AUGMENTED REALITY SYSTEM TO STUDY THE EFFICIENCY OF DYNAMIC EXIT SIGNAGE. IIUM Engineering Journal, 23(1), 200–221. https://doi.org/10.31436/iiumej.v23i1.2053

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)