WORD SEGMENTATION OF OUTPUT RESPONSE FOR SIGN LANGUAGE DEVICES

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i2.1408

Keywords:

Segmentation, Sign-Language, Algorithm

Abstract

Segmentation is an important aspect of translating finger spelling of sign language into Latin alphabets. Although the sign language devices that are currently available can translate the finger spelling into alphabets, there is a limitation where the output is stored in a long continuous string without spaces between words. The system proposed in this work is meant to be used together with a text-generating glove device. The system used text input string and the string is then fed into the system, one character at a time, and then it is segmented into words that is semantically correct. The proposed text segmentation method in this work is by using the dynamic programming and back-off algorithm, together with the probability score using word matching with an English language text corpus. Based on the results, the system is able to properly segment words with acceptable accuracy.

ABSTRAK:

Segmentasi adalah aspek penting dalam menterjemahkan ejaan bahasa isyarat ke dalam huruf Latin. Walaupun terdapat peranti bahasa isyarat yang menterjemahkan ejaan jari menjadi huruf, namun begitu, huruf-huruf yang dihasilkan disimpan dalam rentetan berterusan yang panjang tanpa jarak antara setiap perkataan. Sistem yang dicadangkan di dalam jurnal ini akan diselaraskan bersama dengan sarung tangan bahasa isyarat yang boleh menghasilkan teks. Sistem ini akan mengambil rentetan input teks di mana huruf akan dimasukkan satu persatu dan huruf-huruf itu akan disegmentasikan menjadi perkataan yang betul secara semantik. Kaedah pembahagian yang dicadangkan ialah segmentasi yang menggunakan pengaturcaraan dinamik dan kaedah kebarangkalian untuk mengsegmentasikan huruf-huruf tersebut berdasarkan padanan perkataan dengan pengkalan data di dalam Bahasa Inggeris. Berdasarkan hasil yang telah diperolehi, sistem ini berjaya mengsegmentasikan huruf-huruf tersebut dengan berkesan dan tepat.

Downloads

Download data is not yet available.

References

G. A. Rao, P. Kishore (2016) Sign Language Recognition System Simulated for Video Captured with Smart Phone Front Camera, International Journal of Electrical and Computer Engineering (IJECE), vol. 6, no. 5, p. 2176

Boon Giin Lee and Su Min Lee (2019) Smart Wearable Hand Device for Sign Language Interpretation System with Sensors Fusion, IEEE Sensors Journal pp (99):1-1

Ahmad Zaki Shukor et al, (2015) A New Data Glove Approach for Malaysian Sign Language Detection, Procedia Computer Science, vol. 76, pp 60-67

Norvig, Peter (2009), Natural Language Corpus Data

W. Jiang (2015), Word-Segmentation [http://pypi.org/project/wordsegmentation]

Sadiq Nawaz Khan et al, (2018) Urdu Word Segmentation using Machine Learning Approaches, International Journal of Advanced Computer Science and Applications(IJACSA), 9(6) http://dx.doi.org/10.14569/IJACSA.2018.090628

D. Tanaya and M. Adriani (2016), Dictionary-based Word Segmentation for Javanese, Procedia Computer Science, vol. 81, pp. 208–213

S. Srinivasan, S. Bhattacharya, R. Chakraborty (2012), Segmenting web-domains and hashtags using length specific models, In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Oct 2012, Maui.

Y. Bassil, M. Alwani (2012), OCR Post-Processing Error Correction Algorithm using Google Online Spelling Suggestion., Journal of Emerging Trends in Computing and Information Sciences, vol. 3, no. 1

S. P. Panda, A. K. Nayak (2015), Automatic speech segmentation in syllable centric speech recognition system, International Journal of Speech Technology, vol. 19, no. 1, pp. 9–18

Y. Bassil, M. Alwani (2012), Post-Editing Error Correction Algorithm for Speech Recognition using Bing Spelling Suggestion, International Journal of Advanced Computer Science and Applications, vol. 3, no. 2

S. S. Chawathe (2018), Lexical text segmentation using dictionaries, 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC)

Jenks, G. (2017), Python Word Segmentation [http://grantjenks.com/docs/wordsegment]

Downloads

Published

2020-07-04

How to Cite

Za’bah, N. F., Muhammad Nazmi, A. A. A., & Azman, A. W. (2020). WORD SEGMENTATION OF OUTPUT RESPONSE FOR SIGN LANGUAGE DEVICES. IIUM Engineering Journal, 21(2), 153 - 163. https://doi.org/10.31436/iiumej.v21i2.1408

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)