CHARACTERISATION OF POMACEA CANALICULATA EGGS TREATED WITH PROTEASE
DOI:
https://doi.org/10.31436/iiumej.v25i1.2732Keywords:
Physical and chemical charcaterisation, protease, Pomacea canaliculata, egg, pesticideAbstract
Pomacea canaliculata is a type of freshwater snail that has become a major pest in paddy fields, as it feeds on young paddy leaves and stems, thus, posing a serious threat to paddy production. It was named one of the world's top 100 worst invasive species, with serious consequences for the environment, human health, and the social economy. Their hatchability rate is high, which explains their global distribution worldwide. Therefore, it is vital to manage their hatchability to prevent their population from expanding further by understanding the protection that permits the eggs to survive. P. canaliculata eggs are covered with a thin layer of cuticle that is rich in protein to protect the embryo during the hatching process. The biological treatment with protease enzyme successfully hydrolysed the protein cuticle layer, lowering the percentage of hatchability. Disruption of the protein cuticle may have an impact on conductivity, water loss, hatching time, protein content, and other factors. However, documentation of the protease effect on the protein cuticle is scarce. Therefore, the goal of this study is to evaluate the protease treatment on the protein cuticle of P. canaliculata eggs physically (conductivity, water loss, and morphological analysis) and chemically (cuticle protein content, protein breakdown, and amino acid profile). Physical characterisation revealed that protease-treated eggs have higher conductivity and water loss than the control egg. Images taken with a light microscope (LM) and a scanning electron microscope (SEM) revealed changes in cuticle structure, which explained the protease-induced cuticle hydrolysis. Chemical characterisation revealed a decrease in cuticle protein content, hydrolysis of protein to a small size, and changes in amino acid composition. The physical and chemical analyses strongly suggested that protease can damage the cuticle protein, thus, preventing the eggs from hatching.
ABSTRAK: Pomacea canaliculata adalah sejenis siput air tawar yang telah menjadi perosak utama di sawah padi, kerana ia memakan daun dan batang padi yang muda, sekaligus menimbulkan ancaman serius kepada pengeluaran padi. Ia disenaraikan antara 100 spesis invasif utama dunia dengan kesan serius pada alam sekitar, kesihatan manusia dan sosio-ekonomi. Kadar penetasannya adalah tinggi, meningkatkan penyebaran mereka secara global di seluruh dunia. Oleh itu, adalah sangat penting untuk mengawal populasi ini daripada terus berkembang dengan memahami perlindungan yang membenarkan telur untuk hidup. Telur P.canaliculata dilapisi dengan lapisan kutikel nipis yang kaya dengan protein bagi memberi perlindungan untuk embrio semasa proses penetasan. Rawatan biologi dengan enzim protease telah berjaya menghidrolisis lapisan kutikel protein, sekaligus mengurangkan peratusan penetasan. Gangguan terhadap lapisan kutikel protein mungkin memberi kesan pada konduktiviti, kehilangan air, tempoh penetasan, kandungan protein dan faktor lain. Walau bagaimanapun, kesan protease ke atas kutikel protein adalah kurang. Oleh itu, objektif kajian ini adalah mengkaji rawatan protease ke atas kutikel protein telur P. canaliculata secara fizikal (konduktiviti, kehilangan air, dan analisis imej kutikel) dan secara kimia (kandungan protein kutikel, pecahan protein dan profil asid amino). Ciri fizikal menunjukkan telur yang dirawat protease mempunyai konduksi dan kehilangan air tinggi berbanding telur kawalan. Imej yang diambil dengan mikroskop cahaya (LM) dan mikroskop pengimbas elektron (SEM) mendedahkan perubahan dalam struktur kutikel, yang menjelaskan hidrolisis kutikel yang disebabkan oleh protease. Ciri kimia menunjukkan penurunan kandungan protein kutikel, saiz kecil pada hidrolisis protein, dan perubahan pada kandungan asid amino. Analisis fizikal dan kimia mencadangkan bahawa protease merosakkan protein kutikel, oleh itu menghalang telur daripada menetas.
Downloads
Metrics
References
Marwoto RM, Isnaningsih NR, Joshi RC. (2018) The invasive apple snail (Pomacea spp) in Indonesia, Bio Web of Conferences, 35: 41-48. https://doi.org/10.1051/bioconf/20201900014 DOI: https://doi.org/10.1051/bioconf/20201900014
Wang Z, Tan J, Tan L, Liu J, Zhong L. (2012). Control the egg-hatching process of Pomacea canaliculata (Lamarck) by water spraying and submersion, Acta Ecologica Sinica, 32: 184-188. https://doi.org/10.1016/j.chnaes.2012.04.008 DOI: https://doi.org/10.1016/j.chnaes.2012.04.008
Wang J, Xing Y, Dai Y, Ki Y, Xiang W, Dai J, Xu F. (2022) A novel gelatin-based sustained release molluscicide for control of the invasive agricultural pest and disease vector Pomacea canaliculata, Molecules, 27: 4268. https://doi.org/10.3390/molecules27134268 DOI: https://doi.org/10.3390/molecules27134268
Latip SNHM, Ibrahim R, Haiyee ZA. (2017) The antifeedant activity of essential oil from Cymbopogon citratus and Piper bitle for controlling golden apple snail, Pomacea canaliculata. J Fundamental of Applied Science, 9(6S): 39-49. https://doi.org/10.4314/jfas.v9i6s.4 DOI: https://doi.org/10.4314/jfas.v9i6s.4
Mohd Salleh NH, Zainalabidin N. (2017) Evaluation of protease enzyme on Pomacea canaliculata eggs. In: Saian R., Abbas, M. (eds) Proceedings of the second International Conference on the Future of ASEAN (ICoFA). 16-17 August 2017; Malaysia. Edited by Saian R. and Abbas MA, Springer; pp. 443-451. https://doi.org/10.1007/978-981-10-8471-3_44 DOI: https://doi.org/10.1007/978-981-10-8471-3_44
Zainalabidin N, Mohd Salleh NH, Dachyar A, Mohamed Zulkali MD. (2014) Application of Bacillus thuringiensis subs kurstaki as biological agents for disrupting Golden Apple Snail (Pomacea canaliculata) eggs and juveniles. Proceedings of International Conference of Engineering Management:25-26 Jan 2014; Perlis, Malaysia.
Wilsom PW, Suther CS, Bain MM, Icken W, Jones A, Quinlan-Pluck F, Olori V, Gautron J, Dunn IC. (2017) Understanding avian egg cuticle formation in the oviduct: a study of its origin and deposition. Biology of Reproduction, 97(1): 39-49. https://doi.org/10.1093/biolre/iox070 DOI: https://doi.org/10.1093/biolre/iox070
Meyer-Willere AO, Santos-Soto A. 2006. Temperature and light intensity affecting egg production and growth performance of the Apple snail Pomacea patula (Baker 1922), Advances en Investigaciaon Agropecuaria, 10: 41-58.
Peebles ED, Pansky T, Doyle SM, Boyle CR, Smith TW, Latour MA. (1998) Effects of dietary fat and eggshell cuticle removal on egg water loss and embryo growth in broiler hatching eggs. Poultry Science, 77(10): 1522-1530. https://doi.org/10.1093/ps/77.10.1522 DOI: https://doi.org/10.1093/ps/77.10.1522
Rose-Martel M, Du J, Hincke MT. (2012) Proteomic analysis provides new insight into the chicken eggshell cuticle. Journal Proteomics, 75(9): 2697-2706. https://doi.org/10.1016/j.jprot.2012.03.019 DOI: https://doi.org/10.1016/j.jprot.2012.03.019
Chevallet, M., Luche, S., Rabilloud, T. (2006) Silver staining of proteins in polyacrylamide gels. Natural Protocol, 1(4): 1852-1858. https://doi.org/10.1038/nprot.2006.288 DOI: https://doi.org/10.1038/nprot.2006.288
Piecyk M, Srama A, Bzducha A, Obiedzinsk M. (2007) Application of HPLC and GC/MS to quantification of phenylalanine in chosen kinds of food for particular nutritional uses. Acta Scientarium Polonorum Technologia Alimentaria, 6(2): 5-18. http://www.food.actapol.net/volume6/issue2/1_2_2007.pdf
Cremasco H, Galvan D, Angilelli KG, Borsato D, de Oliveira AG. (2019) Influence of film coefficient during multicomponent diffusion-KCl/NaCl in biosolid for static and agitated system using 3D computational simulation. Food Science Technology (Campinas), 39 (1): 173-181. https://doi.org/10.1590/fst.40917 DOI: https://doi.org/10.1590/fst.40917
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. (2022) Properties, genetics and innate immune function of cuticle in egg-laying species. Front Immunology, 13:838525. https://doi.org/10.3389/fimmu.2022.838525 DOI: https://doi.org/10.3389/fimmu.2022.838525
Alsobayel AA, Almarshade MA, Albadry MA. (2013) Effect of breed, age and storage period on egg weight, egg weight loss and chick weight of commercial broiler breeders raised in Saudi Arabia. Journal Saudi Social Agricultural Science, 12(1): 53–57. https://doi.org/10.1016/j.jssas.2012.06.003 DOI: https://doi.org/10.1016/j.jssas.2012.06.003
Galvez DV, Castro I, Morel PCH, Chua WH, Loh M. (2021) The eggshell structure in apteryx; form, function and adaptation for the production of a caviar substitute. Ecology and Evolution, 11(7): 3184-3202. http://doi.org/10.1002/ece3.7266 DOI: https://doi.org/10.1002/ece3.7266
Khan AK, Williams L, Nevalainen HKM. (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structure and hatching of Meloidogyne javanica juveniles. Biological Control, 31(3): 346-352. https://doi.org/10.1016/j.biocontrol.2004.07.011 DOI: https://doi.org/10.1016/j.biocontrol.2004.07.011
Quanlin L, Kun W, Jiangxia Z, Congjiao S, Changrong G, Ning Y, Guiyun X. (2019) Nanostructural basis for the gloss of chicken eggshells. Poultry Science, 98(11): 5446-5451. https://doi.org/10.3382/ps/pez329. DOI: https://doi.org/10.3382/ps/pez329
Darwesh El-Hawary AS, El Kelany US, El Sherbiny GM. (2019) Nematicidal activity of thermostable alkaline protease produced by Saccharomonaspora viridis strain Hw G550. Biotechnology Reproductive, 24: e00386. http://doi.org/10.1016/j.btre.2019.e00386. DOI: https://doi.org/10.1016/j.btre.2019.e00386
Mackowiak-Dryka MM, Szkucik K, Pyz-Lukasi R. (2020) Snail eggs as a raw material for the production of a caviar substitute. Journal of Veterinary Research, 64(4): 543-547. https://doi.org/10.2478/jvetres-2020-0062. DOI: https://doi.org/10.2478/jvetres-2020-0062
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Kementerian Sains, Teknologi dan Inovasi
Grant numbers 9005-00056