Design of Miniaturized Antenna for IoT Applications Using Metamaterial
DOI:
https://doi.org/10.31436/iiumej.v24i1.2505Keywords:
Miniaturized antenna, IoT Applications, MetamaterialAbstract
With the accelerated development of wireless technology, miniaturized antennae have become outstandingly favored due to the growing demand of Internet of Things (IoT) devices that are essential to accommodate low power, high data rates, and long-range communication. When an antenna operates at lower frequencies, the size of the antenna becomes bulky, which has raised an issue in the integration of the antennae within IoT devices due to their size constraints. Hence, in this paper, a miniaturized ring-monopole antenna incorporated with Rectangular Complementary Split Ring Resonator (RCSRR) and slotted ground plane, was designed at 2.4 GHz and 5.8 GHz frequency bands. The antenna was miniaturized by 46.8 % with overall size of 30 mm x 24.8 mm x 1.6 mm, and it was printed on FR-4 substrate with dielectric constant of 4.3. Design optimization was carried out by modifying the antenna structure, optimizing the dimensions, and using a low loss Rogers RT5880 substrate with a dielectric constant of 2.2, and thickness of 1.575 mm. The width of the antenna was also reduced to 20 mm which furthered the size reduction to 57.8 %. From the simulation results, the antenna was operated at 2.448 GHz, 2.864 GHz, and 5.8 GHz frequency bands with good return loss at -13.872 dB, -33.491 dB, and -19.3 dB respectively. The antenna fabrication and measurement were also implemented to the best simulated design using different substrates to validate its performance by comparing the simulated results with the measured results.
ABSTRAK: Dengan perkembangan pesat teknologi tanpa wayar, antena miniatur telah menjadi sangat digemari kerana permintaan yang semakin meningkat bagi peranti Internet Benda (IoT), iaitu mempunyai kuasa rendah, kadar data yang tinggi dan berkomunikasi jarak jauh. Apabila antena beroperasi pada frekuensi rendah, saiz antena menjadi besar, ini menimbulkan isu kekangan saiz pada antena ketika berada dalam peranti IoT. Oleh itu, kajian ini adalah berkenaan antena ekakutub-gelang kecil yang digabungkan dengan Resonator Gelang Pemisah Pelengkap Segiempat Tepat (RCSRR) dan satah tanah berslot, telah direka bentuk pada jalur frekuensi 2.4 GHz dan 5.8 GHz. Antena telah dikecilkan sebanyak 46.8 % dengan saiz keseluruhan 30 mm x 24.8 mm x 1.6 mm, dan ia dicetak pada substrat FR-4 dengan pemalar dielektrik 4.3. Reka bentuk optimum telah dilakukan dengan mengubah suai struktur antena, berdimensi optimum, menggunakan substrat Rogers RT5880 rendah kuasa dengan pemalar dielektrik 2.2, dan berketebalan 1.575 mm. Lebar antena juga dikurangkan sebanyak 20 mm, ini bermakna pengurangan saiz berjaya ditingkatkan kepada 57.8%. Dapatan simulasi menunjukkan antena telah beroperasi pada jalur frekuensi 2.448 GHz, 2.864 GHz dan 5.8 GHz dengan pengurangan kehilangan pulangan kuasa yang baik iaitu pada -13.872 dB, -33.491 dB dan -19.3 dB masing-masing. Fabrikasi dan pengukuran antena juga telah dilaksanakan pada reka bentuk simulasi terbaik menggunakan substrat yang berbeza bagi mengesahkan kemampuannya dengan membandingkan dapatan simulasi dengan hasil yang diukur.
Downloads
Metrics
References
Balanis CA. (2016) Antenna Theory: Analysis and Design. 4th Edition. New York, Wiley.
Wi-Fi certified 6 [https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6].
Rothwell EJ, Ouedraogo RO. (2014) Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials. Journal of Electromagnetic Waves and Application, 28(17): 2089-2123. DOI: https://doi.org/10.1080/09205071.2014.972470
Cheng K, Liang Z, Hu B. (2021) Design of Miniaturized Microstrip Antenna for Smart Home Wireless Sensor. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT): 18-20 Aug 2021; , pp. 234-236, Xi'an, China. pp 234-236. doi: 10.1109/ICEICT53123.2021.953 1163. DOI: https://doi.org/10.1109/ICEICT53123.2021.9531163
Chandan K. (2020) Truncated ground plane multiband monopole antenna for WLAN and WiMAX applications. IETE Journal of Research. 68(4): 2416-2421.
https://doi.org/10.1080/03772063.2019.1709568 DOI: https://doi.org/10.1080/03772063.2019.1709568
Bhatia SS, Sharma N. (2020) A Compact Wideband Antenna Using Partial Ground Plane with Truncated Corners, L–Shaped Stubs and Inverted T–Shaped Slots. Progress In Electromagnetics Research M. 97: 133-144. doi:10.2528/pierm20072503 DOI: https://doi.org/10.2528/PIERM20072503
Chandan, Barthi G, Srivastava T, Rai BS. (2018) Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground. In Proceedings of AIP, 1952(1). AIP Publishing LLC, https://doi.org/10.1063/1.5031998 DOI: https://doi.org/10.1063/1.5031998
Baudha S, Basak A, Manocha M, Yadav MV. (2020) A compact planar antenna with extended patch and truncated ground plane for ultra-wide band application. Microwave and Optical Technology Letters 62(1): 200-209. https://doi.org/10.1002/mop.31988 DOI: https://doi.org/10.1002/mop.31988
Rahardi R, Rizqi M, Lukito WD, Wibowo R, Oktafiani F, Munir A. (2020) Reduced Size Meander Line-based 433MHz Printed Dipole Antenna for UAV Telemetry Application. In Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pp. 176-179.
doi: 10.1109/ICRAMET51080.2020.9298675 DOI: https://doi.org/10.1109/ICRAMET51080.2020.9298675
Ezhumalai A, Ganesan N, Balasubramaniyan S. (2021) An extensive survey on fractal structures using iterated function system in patch antennas. International Journal of Communication Systems. 34(15): e4932. https://doi.org/10.1002/dac.4932 DOI: https://doi.org/10.1002/dac.4932
Chourasia S, Sharma SK, Goswami DP. (2020) Review on miniaturization techniques of microstrip patch antenna. In Proceedings of the 4th International Conference: Innovative Advancement in Engineering & Technology (IAET). http://dx.doi.org/10.2139/ssrn.3550995 DOI: https://doi.org/10.2139/ssrn.3550995
Manage PS, Naik U, Nargundkar S, Rayar V. (2020) A Survey on applications of Metamaterials in Antenna Design. In Proceedings of Third International Conference on Smart Systems and Inventive Technology: 20-22 August 2020; Tirunelveli, India. IEEE; pp. 153-158. doi: 10.1109/ICSSIT48917.2020.9214088 DOI: https://doi.org/10.1109/ICSSIT48917.2020.9214088
Mishra RN, Arora A, Singh S, Bhattacharyya S. (2017) A split ring resonator (SRR) based metamaterial structure for bandstop filter applications. In Proceedings of IEEE Applied Electromagnetics Conference (AEMC): 19-22 December 2017; Aurangabad, India. IEEE; pp. 1-2. doi: 10.1109/AEMC.2017.8325685. DOI: https://doi.org/10.1109/AEMC.2017.8325685
Al-Bawri SS, Jamlos MF. (2018) Design of Low-Profile Patch Antenna Incorporated with Double Negative Metamaterial Structure. In Proceedings of International RF and Microwave Conference (RFM): 17-19 December 2018; Penang, Malaysia, IEEE; pp. 45-48.
doi: 10.1109/RFM.2018.8846501 DOI: https://doi.org/10.1109/RFM.2018.8846501
Geetharamani G, Aathmanesan T. (2020) Design of Metamaterial Antenna for 2.4 GHz WiFi Applications. Wireless Personal Communication 113: 2289-2300. https://doi.org/10.1007/s11277-020-07324-z DOI: https://doi.org/10.1007/s11277-020-07324-z
Lou R, Mohammad K, Naser-Moghadasi M, Sadeghzadeh RA. (2017) Compact multi-band circularly polarized CPW fed antenna based on metamaterial resonator. Wireless Personal Communications 94(4): 2853-2863. https://doi.org/10.1007/s11277-016-3722-x DOI: https://doi.org/10.1007/s11277-016-3722-x
Ali T, Mohammad Saadh AW, Biradar RC, Anguera J, Andújar A. (2017) A miniaturized metamaterial slot antenna for wireless applications. AEU - International Journal of Electronics and Communications, 82: 368-382. https://doi.org/10.1016/j.aeue.2017.10.005 DOI: https://doi.org/10.1016/j.aeue.2017.10.005
CST Studio Suite 3D EM simulation and analysis software [https://www.3ds.com/products-services/simulia/products/cst-studio-suite]
Muneer B, Shaikh FK, Zhu Q. (2020) Antennas for IoT application: An RF and microwave aspect of IoT. In IoT Architectures, Models, and Platforms for Smart City Applications. Hershey, PA: IGI Global, 2020: 180-192. doi: 10.4018/978-1-7998-1253-1.ch009 DOI: https://doi.org/10.4018/978-1-7998-1253-1.ch009
Lizzi L, Ferrero F, Monin P, Danchesi D, Boudaud S. (2016) Design of miniature antennas for IoT applications. In Proceedings of Sixth International Conference on Communications and Electronics (ICCE): 27-29 July 2016; Ha-Dong, Vietnam, IEEE, pp. 234-237.
doi: 10.1109/CCE.2016.7562642. DOI: https://doi.org/10.1109/CCE.2016.7562642
Elijah AA, Mokayef M. (2020) Miniature microstrip antenna for IoT application. In Proceedings of Materials Today, 29: 43-47. https://doi.org/10.1016/j.matpr.2020.05.678 DOI: https://doi.org/10.1016/j.matpr.2020.05.678
Al-Sehemi A, Al-Ghamdi A, Dishovsky N, Atanasova G, Atanasov N. (2020) A flexible broadband antenna for IoT applications. International Journal of Microwave and Wireless Technologies: 12(6): 531-540. https://doi.org/10.1017/S1759078720000161 DOI: https://doi.org/10.1017/S1759078720000161
Palhade SM, Yawale SP. (2015) Design and Photo-Lithographic Fabrication of Microstrip Patch Antenna. International Journal of Science and Research (IJSR), 4(2): 2021-2024. https://www.ijsr.net/get_abstract.php?paper_id=SUB151708
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.