Battery Energy Storage System (BESS) Modeling for Microgrid
DOI:
https://doi.org/10.31436/iiumej.v24i1.2435Keywords:
Maximum Power Point Tracker (MPPT) controller, Proportional Integral Derivative (PID) controller, Model Predictive Controller (MPC), Battery Energy Storage System (BESS)Abstract
In the age of technology, microgrids have become well known because of their capability to back up the grid when an unpleasant event is about to occur or during power disruptions, at any time. However, the microgrid will not function well during power disruptions if the controller does not respond fast enough and the BESS will be affected. Many types of controllers can be used for microgrid systems. The controllers may take the form of Maximum Power Point Tracking (MPPT) Controller, Proportional Integral Derivative (PID) Controller, and Model Predictive Controller (MPC). Each of the controllers stated has its functions for the microgrid. However, two controllers that must be considered are PID and MPC. Both controllers will be compared based on their efficiency results which can be obtained through simulations by observing both graphs in charging and discharging states. Most researchers implied that MPC is better than PID because of several factors such as MPC is more robust and stable because of its complexity. Other than that, MPC can handle more inputs and outputs than PID which can cater to one input and output only. Although MPC has many benefits over the PID, still it is not ideal due to its complex algorithm. This work proposed an algorithm of simulations for the MPC to operate to get the best output for microgrid and BESS and compare the performance of MPC with PID. Using Simulink and MATLAB as the main simulation software is a very ideal way to simulate the dynamic performance of MPC. Furthermore, with Simulink, unpredictable variables such as Renewable Energy (RE) sources input and loads demands that are related to MPC can be measured easily. The algorithm of MPC is a cost function. Then the performance of the MPC is calculated using Fast-Fourier Transform (FFT) and Total Harmonic Distortion (THD). Lower THD means a higher power factor, this results in higher efficiency. This paper recorded THD of 9.57% and 12.77% in charging states and 16.51% and 18.15% in discharging states of MPC. Besides, PID recorded THD of 22.10% and 29.73% in charging states and 84.29% and 85.58% in discharging states. All of the recorded THD is below 25% in MPC and it shows a good efficiency while PID’s THD is above 25% shows its inefficiency.
ABSTRAK: Pada zaman teknologi, mikrogrid menjadi terkenal kerana keupayaannya untuk menjana kuasa grid apabila kejadian yang tidak menyenangkan bakal berlaku atau ketika terjadinya gangguan kuasa, pada bila-bila masa. Walau bagaimanapun, mikrogrid tidak dapat berfungsi dengan baik semasa gangguan kuasa jika alat kawalan tidak bertindak balas dengan cukup pantas dan BESS akan terjejas. Banyak alat kawalan (pengawal) boleh digunakan bagi keseluruhan sistem mikrogrid. Setiap pengawal adalah berbeza seperti Pengawal Penjejakan Titik Kuasa Maksimum (MPPT), Pengawal Berkadar Terbitan Kamilan (PID) dan Pengawal Model Ramalan (MPC). Setiap pengawal yang dinyatakan mempunyai fungsinya yang tersendiri bagi mikrogrid. Walau bagaimanapun, dua pengawal yang perlu dipertimbangkan adalah PID dan MPC. Kedua-dua pengawal ini akan dibandingkan berdasarkan keputusan kecekapan yang boleh didapati melalui simulasi dengan memerhati kedua-dua graf pada keadaan pengecasan dan nyahcas. Ramai penyelidik menganggap bahawa MPC adalah lebih baik berbanding PID kerana beberapa faktor seperti MPC lebih teguh dan stabil kerana kerumitannya. Selain itu, MPC dapat mengendalikan lebih banyak input dan output berbanding PID yang hanya dapat menyediakan satu input dan output sahaja. Walaupun MPC mempunyai banyak faedah berbanding PID, ianya masih tidak sesuai kerana algoritma yang kompleks. Kajian ini mencadangkan algoritma simulasi bagi MPC beroperasi mendapatkan output terbaik untuk mikrogrid dan BESS dan membandingkan prestasi MPC dengan PID. Perisian simulasi utama yang sangat ideal bagi mensimulasi prestasi dinamik MPC adalah dengan menggunakan Simulink dan MATLAB. Tambahan, dengan Simulink, pembolehubah yang tidak terjangka seperti sumber Tenaga Boleh Diperbaharui (RE) dan permintaan beban yang berkaitan MPC boleh diukur dengan mudah. Algoritma MPC adalah satu fungsi kos. Kemudian prestasi MPC dikira menggunakan Penjelmaan Fourier Pantas (FFT) dan Total Pengherotan Harmonik (THD). THD yang lebih rendah bermakna faktor kuasa meningkat, ini menghasilkan kecekapan yang lebih tinggi. Kajian ini mencatatkan THD sebanyak 9.57% dan 12.77% dalam keadaan mengecas dan 16.51% dan 18.15% dalam keadaan nyahcas oleh MPC. Selain itu, PID mencatatkan THD sebanyak 22.10% dan 29.73% dalam keadaan mengecas dan 84.29% dan 85.58% dalam keadaan nyahcas. Semua THD yang direkodkan adalah di bawah 25% bagi MPC dan ia menunjukkan kecekapan yang baik manakala THD bagi PID adalah melebihi 25% menunjukkan ketidakcekapan.
Downloads
Metrics
References
Abdullah WSW, Osman M, Kadir MZAA, Verayiah R. (2019). The Potential and Status of Renewable Energy Development in Malaysia. Energies, 12: 2437. https://doi.org/10.3390/EN12122437 DOI: https://doi.org/10.3390/en12122437
Rakesh Tej Kumar K, Ramakrishna M, Durga Sukumar G. (2018). A review on PV cells and nanocomposite-coated PV systems. International Journal of Energy Research, 42(7): 2305-2319. https://doi.org/10.1002/ER.4002 DOI: https://doi.org/10.1002/er.4002
Usman Z, Tah J, Abanda H, Nche C. (2020). A Critical Appraisal of PV-Systems’ Performance. Buildings, 10: 192. https://doi.org/10.3390/BUILDINGS10110192 DOI: https://doi.org/10.3390/buildings10110192
Koondhar MA, Laghari IA, Asfaw BM, Reji Kumar R, Lenin AH. (2022). Experimental and simulation-based comparative analysis of different parameters of PV module. Scientific African, 16: e01197. https://doi.org/10.1016/J.SCIAF.2022.E01197 DOI: https://doi.org/10.1016/j.sciaf.2022.e01197
Kumar J, Agarwal A, Singh N. (2020). Design, operation and control of a vast DC microgrid for integration of renewable energy sources. Renewable Energy Focus, 34: 17-36. https://doi.org/10.1016/j.ref.2020.05.001. DOI: https://doi.org/10.1016/j.ref.2020.05.001
Badruhisham SH, Shahrin M, Hanifah A, Yusoff S H, Hasbullah NF, Yaacob M. (2021). Integration of Hybrid Biomass-Solar Photovoltaic- Wind turbine in Microgrid Application. 2021 8th International Conference on Computer and Communication Engineering (ICCCE), 87-92. DOI: https://doi.org/10.1109/ICCCE50029.2021.9467227
Hirsch A, Parag Y, Guerrero J (2018). Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90: 402-411. https://doi.org/10.1016/j.rser.2018.03.040 DOI: https://doi.org/10.1016/j.rser.2018.03.040
Wu T, Ye F, Su Y, Wang Y, Riffat S. (2019). Coordinated control strategy of DC microgrid with hybrid energy storage system to smooth power output fluctuation. International Journal of Low-Carbon Technologies, 15: 46-54. https://doi.org/10.1093/ijlct/ctz056 DOI: https://doi.org/10.1093/ijlct/ctz056
Ahmed M, Meegahapola L, Vahidnia A, Datta M. (2020). Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review. IEEE Access, 8:144730-144766. https://doi.org/10.1109/ACCESS.2020.3014977 DOI: https://doi.org/10.1109/ACCESS.2020.3014977
Alhamrouni I, Hairullah MA, Omar NS, Salem M, Jusoh A, Sutikno T. (2019). Modelling and design of PID controller for voltage control of AC hybrid micro-grid. International Journal of Power Electronics and Drive Systems, 10: 151-159. https://doi.org/10.11591/ijpeds.v10n1.pp151-159 DOI: https://doi.org/10.11591/ijpeds.v10.i1.pp151-159
Shahgholian G. (2021). A brief review on microgrids: Operation, applications, modeling, and control. https://doi.org/10.1002/2050-7038.12885 DOI: https://doi.org/10.1002/2050-7038.12885
Barry NG, Santoso S. (2021). Military Diesel Microgrids: Design, Operational Challenges, Energy Storage Integration. IEEE Power and Energy Society General Meeting, 2021-July. https://doi.org/10.1109/PESGM46819.2021.9637999 DOI: https://doi.org/10.1109/PESGM46819.2021.9637999
Guarnieri M, Bovo A, Giovannelli A, Mattavelli P. (2018). A Real Multitechnology Microgrid in Venice: A Design Review. IEEE Industrial Electronics Magazine, 12(3) :19-31. https://doi.org/10.1109/MIE.2018.2855735 DOI: https://doi.org/10.1109/MIE.2018.2855735
Jiao J, Meng R, Guan Z, Ren C, Wang L, Zhang B. (2019). Grid-connected control strategy for bidirectional AC-DC interlinking converter in AC-DC hybrid microgrid. PEDG 2019 - 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems. https://doi.org/10.1109/PEDG.2019.8807601 DOI: https://doi.org/10.1109/PEDG.2019.8807601
Wei B, Han X, Wang P, Yu H, Li W, Guo L (2020). Temporally coordinated energy management for AC/DC hybrid microgrid considering dynamic conversion efficiency of bidirectional AC/DC converter. IEEE Access, 8: 70878–70889. https://doi.org/10.1109/ACCESS.2020.2985419 DOI: https://doi.org/10.1109/ACCESS.2020.2985419
Newaz S, Naiem-Ur-Rahman M (2020). Voltage Control of Single Phase Islanded Microgrid by Fuzzy Logic Controller for Different Loads. 2020 IEEE Region 10 Symposium, TENSYMP 2020, June, 1560-1563. https://doi.org/10.1109/TENSYMP50017.2020.9230686 DOI: https://doi.org/10.1109/TENSYMP50017.2020.9230686
Alshehri J, Khalid M (2019). Power quality improvement in microgrids under critical disturbances using an intelligent decoupled control strategy based on battery energy storage system. IEEE Access, 7: 147314-147326. https://doi.org/10.1109/ACCESS.2019.2946265 DOI: https://doi.org/10.1109/ACCESS.2019.2946265
Kumar Panda S, Ghosh A. (n.d.). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. https://doi.org/10.1007/s40866-020-0077-x DOI: https://doi.org/10.1007/s40866-020-0077-x
Chen X, Shi M, Zhou J, Chen Y, Zuo W, Wen J, He H. (2020). Distributed Cooperative Control of Multiple Hybrid Energy Storage Systems in a DC Microgrid Using Consensus Protocol. IEEE Transactions on Industrial Electronics, 67(3): 1968-1979. https://doi.org/10.1109/TIE.2019.2898606 DOI: https://doi.org/10.1109/TIE.2019.2898606
Hu J, Shan Y, Xu Y, Guerrero JM. (2019). A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. International Journal of Electrical Power and Energy Systems, 104: 583-592. https://doi.org/10.1016/j.ijepes.2018.07.037 DOI: https://doi.org/10.1016/j.ijepes.2018.07.037
Sarkar SK, Badal FR, Das SK. (2018). A comparative study of high performance robust PID controller for grid voltage control of islanded microgrid. International Journal of Dynamics and Control, 6(3):1207-1217. https://doi.org/10.1007/s40435-017-0364-0 DOI: https://doi.org/10.1007/s40435-017-0364-0
Sarkar SK, Badal FR, Das SK, Miao Y. (2018). Discrete time model predictive controller design for voltage control of an islanded microgrid. 3rd International Conference on Electrical Information and Communication Technology, EICT 2017, 2018-Janua (December), 1-6. https://doi.org/10.1109/EICT.2017.8275162 DOI: https://doi.org/10.1109/EICT.2017.8275162
Varma B, Swamy N, Mukherjee S. (2020). Trajectory Tracking of Autonomous Vehicles using Different Control Techniques (PID vs LQR vs MPC). Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, ICSTCEE 2020, 84-89. https://doi.org/10.1109/ICSTCEE49637.2020.9276986 DOI: https://doi.org/10.1109/ICSTCEE49637.2020.9276986
Okulski M, ?awry?czuk M. (2022). How Much Energy Do We Need to Fly with Greater Agility? Energy Consumption and Performance of an Attitude Stabilization Controller in a Quadcopter Drone: A Modified MPC vs. PID. Energies, 15(4): 1380. https://doi.org/10.3390/EN15041380 DOI: https://doi.org/10.3390/en15041380
Haber R, Rossiter JA, Zabet K. (2016). An alternative for PID control: Predictive Functional Control - A tutorial. Proceedings of the American Control Conference, 2016-July, 6935-6940. https://doi.org/10.1109/ACC.2016.7526765 DOI: https://doi.org/10.1109/ACC.2016.7526765
Kozák Š. (2016). From PID to MPC: Control engineering methods development and applications. 2016 Cybernetics and Informatics, K and I 2016 - Proceedings of the 28th International Conference. https://doi.org/10.1109/CYBERI.2016.7438634 DOI: https://doi.org/10.1109/CYBERI.2016.7438634
Shan Y, Hu J, Chan KW, Fu Q, Guerrero JM (2019). Model Predictive Control of Bidirectional DC-DC Converters and AC/DC Interlinking Converters-A New Control Method for PV-Wind-Battery Microgrids. IEEE Transactions on Sustainable Energy, 10(4):1823-1833. https://doi.org/10.1109/TSTE.2018.2873390 DOI: https://doi.org/10.1109/TSTE.2018.2873390
Chen M, Xu Z, Zhao J (2020). Triple-mode model predictive control using future target information. Processes, 8(1), 54. https://doi.org/10.3390/pr8010054 DOI: https://doi.org/10.3390/pr8010054
Can Yilmaz U, Erdem Sezgin M, Gol M (n.d.). A Model Predictive Control for Microgrids Considering Battery Aging. https://doi.org/10.35833/MPCE.2018.000804. DOI: https://doi.org/10.35833/MPCE.2018.000804
Yusoff SH, Midi NS, Khan S, Tohtayong M. (2017). Predictive control of AC/AC matrix converter. International Journal of Power Electronics and Drive Systems, 8(4): 1932-1942. https://doi.org/10.11591/ijpeds.v8i4.pp1932-1942 DOI: https://doi.org/10.11591/ijpeds.v8.i4.pp1932-1942
Abbasi M, Dehkordi NM, Sadati N. (2020). Decentralized Model Predictive Voltage Control of Islanded DC Microgrids. 2020 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020. https://doi.org/10.1109/PEDSTC49159.2020.9088498 DOI: https://doi.org/10.1109/PEDSTC49159.2020.9088498
Babayomi O, Li Y, Zhang Z, Kennel R, Kang J. (2020). Overview of Model Predictive Control of Converters for Islanded AC Microgrids. 2020 IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 ECCE Asia, 1023-1028. https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368069 DOI: https://doi.org/10.1109/IPEMC-ECCEAsia48364.2020.9368069
Lee J, Chang HJ. (2018). Analysis of explicit model predictive control for path-following control. PLoS ONE, 13(3):1-19. https://doi.org/10.1371/journal.pone.0194110 DOI: https://doi.org/10.1371/journal.pone.0194110
Zahid T, Xu K, Li W, Li C, Li H. (2018). State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles. Energy, 162:871–882. https://doi.org/10.1016/J.ENERGY.2018.08.071 DOI: https://doi.org/10.1016/j.energy.2018.08.071
Yao C, Ruan X, Wang X. (2010). Isolated buck-boost DC/DC converter for PV grid-connected system. IEEE International Symposium on Industrial Electronics, 889-894. https://doi.org/10.1109/ISIE.2010.5637196 DOI: https://doi.org/10.1109/ISIE.2010.5637196
Long Q, Yu H, Xie F, Zeng W, Lukic S, Lu N, Lubkeman D. (2020). Microgrid power flow control with integrated battery management functions. IEEE Power and Energy Society General Meeting, August. https://doi.org/10.1109/PESGM41954.2020.9281437 DOI: https://doi.org/10.1109/PESGM41954.2020.9281437
de la Parra I, Muñoz M, Lorenzo E, García M, Marcos J, Martínez-Moreno F. (2017). PV performance modelling: A review in the light of quality assurance for large PV plants. Renewable and Sustainable Energy Reviews, 78: 780-797. https://doi.org/10.1016/J.RSER.2017.04.080 DOI: https://doi.org/10.1016/j.rser.2017.04.080
Nguyen T-T, Yoo H-J, Kim H-M. (2015). Application of Model Predictive Control to BESS for Microgrid Control. 8:8798-8813. https://doi.org/10.3390/en8088798 DOI: https://doi.org/10.3390/en8088798
Candidato Carnevale, G. (2019). Distributed model predictive control for power management in small-scale off-grid energy systems. http://webthesis.biblio.polito.it/id/eprint/11350
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
International Islamic University Malaysia
Grant numbers SRCG20-049-0049 -
Universiti Malaysia Pahang
Grant numbers SRCG20-049-0049 -
Universiti Teknologi MARA
Grant numbers SRCG20-049-0049