SERIES-SERIES AND SERIES-PARALLEL COMPENSATION TOPOLOGIES FOR DYNAMIC WIRELESS CHARGING
DOI:
https://doi.org/10.31436/iiumej.v22i2.1660Keywords:
electric vehicle (EV), wireless power transfer (WPT), dynamic charging, compensation topology, capacitor arrangementAbstract
Electric vehicles (EV) have gained worldwide attention since the implementation of a wireless power transfer (WPT) to charge their batteries. With WPT, it can be very convenient for EV to be charged dynamically. Nevertheless, there are some issues in dynamic WPT, such as maintaining the power transfer efficiency. Several factors that lead to these problems include disruption of the alignment and the optimum distance between the transmitter and receiver coils. It is thus contributing to the loss of power efficiency when charging the EV. Not to mention, manufacturers build different specifications of EV charging station for different types of EV models in order to meet customer demands. An incompatible charging device will not utilize EV wireless charging to its maximum potential. Hence, to improve the power output capability as well as stabilizing the maximum power transfer during the charging process, a compensation circuit is added to the system. This article focuses on comparing two available compensation circuits (series-series (SS) topology and series-parallel (SP) topology) under the application of dynamic wireless charging. The simulations are conducted using NI Multisim based on the relationship of power transfer efficiency with resonance frequency, coefficient of coupling, and the load resistance. The WPT efficiency for SP-topology shows that it is sensitive to the change of resonance frequency and coupling coefficient, whereas SS-topology maintains good efficiency during the WPT process. Nonetheless, SS-topology performance suffers efficiency loss when paired with a higher load, while SP-topology acts differently. This article will observe the best conditions on the selected compensation designs for better application in EV charging systems in a moving state.
ABSTRAK: Kenderaan elektrik (EV) telah menarik perhatian dunia sejak pelaksanaan alih kuasa wayarles (WPT) bagi mengecas bateri. Melalui WPT, EV lebih mudah kerana ia boleh dicas secara dinamik. Namun, pengecasan dinamik WPT turut mengalami masalah, seperti mengimbang kecekapan pemindahan kuasa. Beberapa faktor yang membawa kepada masalah ini adalah kerana terdapat gangguan penjajaran dan jarak optimum antara gegelung pemancar dan penerima. Kerana ini, ia menyumbang kepada kehilangan kecekapan kuasa semasa mengecas EV. Pengeluar juga membina spesifikasi stesen pengisian EV berlainan mengikut jenis model EV demi memenuhi permintaan pelanggan. Namun, platform pengecas EV yang berbeza, tidak dapat mengecas EV secara wayarles dengan maksimum. Oleh itu, bagi membaiki keupayaan jana kuasa serta menstabilkan pengeluaran kuasa maksimum semasa proses pengecasan, litar gantian ditambah ke dalam sistem. Artikel ini memberi keutamaan pada dua litar gantian berbeza (topologi bersiri (SS) dan siri-selari (SP)) di bawah aplikasi pengecasan wayarles dinamik. Simulasi dibuat menggunakan NI Multisim mengikut kecekapan pemindahan kuasa dengan frekuensi resonan, pekali gandingan dan rintangan beban. Kecekapan WPT bagi topologi-SP menunjukkan ianya sensitif pada perubahan frekuensi resonan dan pekali gandingan. Manakala topologi-SS kekal cekap semasa proses WPT. Walau bagaimanapun, prestasi topologi-SS berkurangan ketika diganding dengan beban besar, begitu juga berbeza bagi topologi-SP. Artikel ini akan mengkaji keadaan terbaik pada reka bentuk gantian terpilih bagi aplikasi EV dalam sistem pengecasan bergerak.
Downloads
Metrics
References
Vepachedu S. (2017) The History of The Electric Car. Andhra Journal of Industrial News. 14-27.
Salah WA, Alsayid B, Albreem MAM, Abu Zneid B, Alkhasawneh M, Al Mofleh A, Abu Sneineh A, Al Aish AA. (2019) Electric vehicle technology impacts on energy. International Journal of Power Electronics and Drive Systems (IJPEDS).10.1.10.11591/ijpeds.v10.i1.pp1-9. DOI: https://doi.org/10.11591/ijpeds.v10.i1.pp1-9
Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, Deng T, Shang W. (2018) Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 28(6): 653-666. doi: 10.1016/j.pnsc.2018.11.002 DOI: https://doi.org/10.1016/j.pnsc.2018.11.002
Lukic S, Pantic Z. (2013) Cutting the Cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electrification Magazine, 1(1): 57-64. doi: 10.1109/MELE.2013.2273228 DOI: https://doi.org/10.1109/MELE.2013.2273228
Afridi K. (2018) Wireless charging of electric vehicles. National Academy of Engineering. in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2017 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/24906. DOI: https://doi.org/10.17226/24906
Li S, Mi CC. (2015) Wireless power transfer for electric vehicle applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1): 4-17. doi:10.1109/JESTPE.2014.2319453 DOI: https://doi.org/10.1109/JESTPE.2014.2319453
Zaini SA, Yusoff SA, Abdullah AA, Khan S, Abd Rahman F, Nanda. NZ. (2020) Investigation of magnetic properties for different coil sizes of dynamic wireless charging pads for electric vehicles (EV). IIUM Engineering Journal, 21(1): 23-32. doi:10.31436/iiumej.v21i1.1108 DOI: https://doi.org/10.31436/iiumej.v21i1.1108
Mi C, Abdul Masrur M. (2017) Hybrid electric vehicles: Principles and applications with practical perspectives. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118970553
Ahmad A, Alam MS, Chabaan R. (2018) A comprehensive review of wireless charging technologies for electric vehicles. IEEE Transactions on Transportation Electrification, 4(1): 38-63. doi: 10.1109/TTE.2017.2771619 DOI: https://doi.org/10.1109/TTE.2017.2771619
Aditya K, Williamson SS. (2014) Comparative study of series-series and series-parallel compensation topologies for electric vehicle charging. IEEE 23rd International Symposium on Industrial Electronics (ISIE). doi: 10.1109/ISIE.2014.6864651 DOI: https://doi.org/10.1109/ISIE.2014.6864651
Shevchenko V, Husev O, Strzelecki R, Pakhaliuk B, Poliakov N, Strzelecka N. (2019) Compensation topologies in IPT systems: Standards, Requirements, Classification, Analysis, Comparison and Application. IEEE Access, 7, 120559-120580. doi: 10.1109/ACCESS.2019.2937891 DOI: https://doi.org/10.1109/ACCESS.2019.2937891
Azambuja R, Brusamarello VJ, Haffner S, Porto RW. (2017) Full four capacitor circuit compensation for inductive power transfer. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2-7. doi: 10.1109/I2MTC.2013.6555406. DOI: https://doi.org/10.1109/I2MTC.2013.6555406
Chenggang F, Jiancheng S, Lingyan L, Yameng W. (2017) Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application. 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), ID 41321671. doi: 10.1109/WoW.2017.7959404 DOI: https://doi.org/10.1109/WoW.2017.7959404
Rehman, M., Baharudin, Z., Nallagownden, P., & Islam, B. (2017). Modeling and Analysis of Series-Series and Series-Parallel Combined Topology for Wireless Power Transfer using Multiple Coupling Coefficients. IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.11, November 2017.
Rituraj G, Joy ER, Kushwaha BK, Kumar P. (2014) Analysis and comparison of series-series and series-parallel topology of contactless power transfer systems. TENCON 2014-2014 IEEE Region 10 Conference. doi: 10.1109/TENCON.2014.7022440. DOI: https://doi.org/10.1109/TENCON.2014.7022440
Nanda, N. N., Yusoff, S. H., Toha, S. F., Hasbullah, N. F., & Roszaidie, A. S. A Brief Review: Basic Coil Designs for Inductive Power Transfer. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), Vol. 20, No. 3, December 2020, pp. 1703-1716. doi: 0.11591/ijeecs.v20.i3.pp1703-1716. DOI: https://doi.org/10.11591/ijeecs.v20.i3.pp1703-1716
Abou Houran M, Yang X, Chen W. (2018) Magnetically coupled resonance WPT: Review of compensation topologies, resonator structures with misalignment, and EMI diagnostics. Electronics, 11: 296. doi:10.3390/electronics7110296 DOI: https://doi.org/10.3390/electronics7110296
Barman SD, Reza AW, Kumar N. (2014). Efficiency maximization of resonant coupled wireless power transfer system via impedance matching based on coupling tuning. 3rd International Conference on Computer Engineering & Mathematical Sciences, Langkawi, Malaysia, November 2014.
El-Shahat A, Ayisire E, Wu Y, Rahman M, Nelms D. (2019). Electric vehicles wireless power transfer state-of-the-art. Energy Procedia, 162: 24-37. doi: 10.1016/j.egypro.2019.04.004 DOI: https://doi.org/10.1016/j.egypro.2019.04.004
Panchal C, Stegen S, Lu J. (2018) Review of static and dynamic wireless electric vehicle charging system. Engineering Science and Technology, an International Journal, 21(5): 922-937. doi: 10.1016/j.jestch.2018.06.015 DOI: https://doi.org/10.1016/j.jestch.2018.06.015
Al-Saadi M, Al-Gizi AG, Al-Chlaihawi S, Al-Omari AH. (2018). Inductive power transfer for charging the electric vehicle batteries. Electrotehnic?, Electronic?, Automatic?, 66: 29-39.
Carmeli MS, Castclli-Dezza F, Mauri M, Rossi M, Dolata A, Pedretti M, Simonini I. (2018) Analysis of a quasi-dynamic wireless power transfer system for EV batteries charging. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 383-388. doi: 10.1109/SPEEDAM.2018.8445238 DOI: https://doi.org/10.1109/SPEEDAM.2018.8445238
Aditya K. (2016) Design and implementation of an inductive power transfer system for wireless charging of future electric transportation. PhD thesis. Electrical, Computer and Software Engineering Department, University of Ontario Institute of Technology Oshawa, Ontario, Canada.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.