An Easy-to-Fabricate, Submerged Carbon-Based Air Cathode for Biofuel Cells

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.2974

Keywords:

air-cathode biofuel cell, carbon-based air cathode, zinc-air biofuel cell, microbial fuel cell, Phanerochaete chrysosporium

Abstract

An air cathode (AC) is one of the main components in an AC-based biofuel cell (BFC). Its cost accounts for nearly half of the total cost of the cell as specific requirements must be met for it to perform as an effective site for the oxygen (O2) reduction reaction (ORR) to occur. In most applications where the AC is totally submerged in the electrolyte, air or O2 is bubbled throughout the electrolyte during the entire discharge operation to enhance the cell performance. This is because the dissolved O2 (DO) concentration is merely one-third of the O2 concentration in ambient air. Unfortunately, this approach increases the overall complexity and cost of the system. Therefore, this present study developed an effective, easy-to-fabricate AC for use under totally submerged and unaerated conditions. The design principle of the proposed AC is a balance between the hydrophobicity and hydrophilicity of the components used, i.e., the combination of a carbon felt, an interwoven carbon fiber sheet, and a nickel mesh. All the cathode components were snugly fitted merely using the mechanical pressure of the cylindrical BFC holders. The fabricated AC was assembled in a zinc-air BFC employing fungal microbes Phanerochaete chrysosporium (P. chrysosporium). When tested at a constant current of 1.0 mA under unaerated, uncontrolled ambition conditions, the zinc-air BFC discharge lasted 42 days with an average operating voltage of 200 mV. Under these conditions and even without the inclusion of any catalytic material, the cell performance met the operating requirements of the low-powered remote sensing devices. Therefore, the proposed easy-to-fabricate submerged air electrode has demonstrated its viability for use in BFCs.

ABSTRAK: Katod udara (AC) merupakan salah satu komponen utama bagi sel tenaga bio (SFB) berasaskan AC. Hampir separuh daripada keseluruhan kos sel berpunca dari katod udara (AC). Ini kerana beberapa keperluan khusus perlu dipenuhi bagi menyediakan tapak tindak balas penguraian (TPO) oksigen (O2) berlaku. Kebanyakan aplikasi biasa di mana AC terendam sepenuhnya dalam larutan elektrolit. Udara atau oksigen O2 dialirkan secara berterusan sepanjang operasi discaj bertujuan menggandakan prestasi sel. Ini disebabkan kepekatan oksigen terlarut adalah hanya sepertiga daripada kepekatan oksigen di dalam udara sekitar. Malangnya, kaedah ini akan menambah kompleksiti dan kos. Oleh itu, kajian ini bertujuan membina AC yang efektif, bersifat mudah-pasang bagi aplikasi tenggelam sepenuhnya dan tanpa pengudaraan. Prinsip asas pada cadangan rekabentuk katod udara AC ini adalah bagi mengimbangi ciri hidrofobik dan hidrofilik komponen yang digunakan, iaitu kombinasi fabrik karbon, lapisan serat karbon terjalin dan jaringan nikel. Kesemua komponen katod ini terangkum kemas menggunakan tekanan mekanikal pada selinder pemegang BFC. AC ini kemudiannya dikumpulkan dalam BFC zink-udara dengan mengguna pakai mikrob kulat Phanerochaete chrysosporium (P. chrysosporium). Apabila diuji dengan arus tetap 1.0 mA dalam keadaan tanpa udara dan sekitaran tanpa kawalan, sel BFC zink-udara mampu bertahan selama 42 hari dengan purata voltan operasi sebanyak 200 mV. Dalam kondisi ini dan walau tanpa sebarang unsur pemangkin, prestasi sel memenuhi keperluan operasi peranti penderiaan jauh bertenaga rendah. Oleh itu, katod udara yang dibangunkan bagi aplikasi elektrod terendam penuh dan bersifat mudah-pasang ini telah berhasil memenuhi keperluan bagi kegunaan BFC.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Vishnevskaya M, Gazizova D, Victorenko A, & Konova I. (2019). Membraneless microbial biofuel cell for municipal waste water treatment. IOP Conference Series: Earth and Environmental Science, 337(1):2–7. https://doi.org/10.1088/1755-1315/337/1/012002. DOI: https://doi.org/10.1088/1755-1315/337/1/012002

Pal M, & Sharma RK. (2020). Development of wheat straw based catholyte for power generation in microbial fuel cell. Biomass and Bioenergy, 138(January):105591. https://doi.org/10.1016/j.biombioe.2020.1055916. DOI: https://doi.org/10.1016/j.biombioe.2020.105591

Li WW, Yu HQ, & He Z. (2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy and Environmental Science, 7(3):911–924. https://doi.org/10.1039/c3ee43106a. DOI: https://doi.org/10.1039/C3EE43106A

Rozendal RA, Hamelers HVM, Rabaey K, Keller J, & Buisman, CJN. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26(8):450–459. https://doi.org/10.1016/j.tibtech.2008.04.008. DOI: https://doi.org/10.1016/j.tibtech.2008.04.008

Reinhard S, Sitorus I, Hani M, Bakar A, & Majlan EH. (2020). Review on High-Performance Air Cathode Microbial Fuel Cell for Power Generation and COD Reduction. Jurnal Kejuruteraan, 32(4):569–577. DOI: https://doi.org/10.17576/jkukm-2020-32(4)-02

Khilari S, Pandit S, Das D, & Pradhan D. (2014). Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells. Biosensors and Bioelectronics, 54:534–540. https://doi.org/10.1016/j.bios.2013.11.044. DOI: https://doi.org/10.1016/j.bios.2013.11.044

Choi YJ, Mohamed HO, Park SG, Al Mayyahi RB, Al-Dhaifallah M, Rezk H, Ren X, Yu H, & Chae KJ. (2019). Electrophoretically fabricated nickel/nickel oxides as cost effective nanocatalysts for the oxygen reduction reaction in air-cathode microbial fuel cell. International Journal of Hydrogen Energy, 45(10):5960–5970. https://doi.org/10.1016/j.ijhydene.2019.05.091. DOI: https://doi.org/10.1016/j.ijhydene.2019.05.091

Ahmed J, Yuan Y, Zhou L, & Kim S. (2012). Carbon supported cobalt oxide nanoparticles-iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. Journal of Power Sources, 208:170–175. https://doi.org/10.1016/j.jpowsour.2012.02.005. DOI: https://doi.org/10.1016/j.jpowsour.2012.02.005

Das S, Chakraborty I, Rajesh PP, & Ghangrekar MM. (2020). Performance Evaluation of Microbial Fuel Cell Operated with Pd or MnO2 as Cathode Catalyst and Chaetoceros Pretreated Anodic Inoculum. Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 1–7. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000501. DOI: https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000501

Wang Y, & Leung DYC. (2017). Optimization of Cathode Flooding in Scaled-up Microfluidic Fuel Cells. Energy Procedia, 105:1454–1460. https://doi.org/10.1016/j.egypro.2017.03.429. DOI: https://doi.org/10.1016/j.egypro.2017.03.429

Gajda I, Greenman J, Melhuish C, Santoro C, Li B, Cristiani P, & Ieropoulos I. (2014). Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs). Sustainable Energy Technologies and Assessments, 7:187–194. https://doi.org/10.1016/j.seta.2014.05.001. DOI: https://doi.org/10.1016/j.seta.2014.05.001

Sukri A, Othman R, Abd-Wahab F, & Noor NM. (2021). Self-sustaining bioelectrochemical cell from fungal degradation of lignin-rich agrowaste. Energies, 14(8):2098 https://doi.org/10.3390/en14082098. DOI: https://doi.org/10.3390/en14082098

Pedersen O, Colmer TD, & Sand-Jensen K. (2013). Underwater photosynthesis of submerged plants - Recent advances and methods. Frontiers in Plant Science, 4: 1–20. https://doi.org/10.3389/fpls.2013.00140. DOI: https://doi.org/10.3389/fpls.2013.00140

Verboven P, Pedersen O, Ho QT, Nicolai BM, & Colmer TD. (2014). The mechanism of improved aeration due to gas films on leaves of submerged rice. Plant Cell and Environment, 37(10):2433–2452. https://doi.org/10.1111/pce.12300. DOI: https://doi.org/10.1111/pce.12300

Winkel A, Visser EJW, Colmer TD, Brodersen KP, Voesenek LACJ, Sand-Jensen K, & Pedersen O. (2016). Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient. Plant, Cell and Environment, 39(7):1537–1548. https://doi.org/10.1111/pce.12717. DOI: https://doi.org/10.1111/pce.12717

González-González P, Gómez-Manzo S, Tomasini A, Martínez Y Pérez JL, García Nieto E, Anaya-Hernández A, Ortiz Ortiz E, Castillo Rodríguez RA, Marcial-Quino J, & Montiel-González AM. (2023). Laccase Production from Agrocybe pediades: Purification and Functional Characterization of a Consistent Laccase Isoenzyme in Liquid Culture. Microorganisms, 11(3):568. https://doi.org/10.3390/microorganisms11030568. DOI: https://doi.org/10.3390/microorganisms11030568

Cheng S, & Logan BE. (2011). Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology, 102(6):4468–4473. https://doi.org/10.1016/j.biortech.2010.12.104. DOI: https://doi.org/10.1016/j.biortech.2010.12.104

Canadian Council of Ministers of the Environment. (1999). Canadian Water Quality Guidelines for the Protection of Aquatic Life - Dissolved Oxygen (Freshwater). In Canadian environmental quality guidelines.

Khaled F, Ondel O, & Allard B. (2016). Microbial fuel cells as power supply of a low-power temperature sensor. Journal of Power Sources, 306:354–360. https://doi.org/10.1016/j.jpowsour.2015.12.040. DOI: https://doi.org/10.1016/j.jpowsour.2015.12.040

Tomboc GM, Yu P, Kwon T, Lee K, & Li J. (2020). Ideal design of air electrode-A step closer toward robust rechargeable Zn-air battery. APL Materials, 8(5):050905 https://doi.org/10.1063/5.0005137. DOI: https://doi.org/10.1063/5.0005137

Yang W, Kim KY, & Logan BE. (2015). Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Bioresource Technology, 197:318–322. https://doi.org/10.1016/j.biortech.2015.08.119. DOI: https://doi.org/10.1016/j.biortech.2015.08.119

Arif M, Cheung SCP, & Andrews J. (2020). Influence of Hydrophobicity and Porosity of the Gas Diffusion Layer on Mass Transport Losses in PEM Fuel Cells: A Simulation Study Supported by Experiments. Energy and Fuels, 34(10):13010–13022. https://doi.org/10.1021/acs.energyfuels.0c02596. DOI: https://doi.org/10.1021/acs.energyfuels.0c02596

Chen S, Patil SA, & Schröder U. (2018). A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells. Applied Energy, 211:1089–1094. https://doi.org/10.1016/j.apenergy.2017.12.013. DOI: https://doi.org/10.1016/j.apenergy.2017.12.013

Saba B, Christy AD, Yu Z, Co AC, Islam R, & Tuovinen OH. (2017). Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells. Bioelectrochemistry, 113:79–84. https://doi.org/10.1016/j.bioelechem.2016.10.003. DOI: https://doi.org/10.1016/j.bioelechem.2016.10.003

Downloads

Published

2024-07-14

How to Cite

Sukri, A., Othman, R., & Sarifuddin, N. (2024). An Easy-to-Fabricate, Submerged Carbon-Based Air Cathode for Biofuel Cells. IIUM Engineering Journal, 25(2), 46–56. https://doi.org/10.31436/iiumej.v25i2.2974

Issue

Section

Chemical and Biotechnology Engineering

Funding data

Most read articles by the same author(s)