MAGNETICALLY MODIFIED SUGARCANE BAGASSE BIOCHAR AS CADMIUM REMOVAL AGENT IN WATER
DOI:
https://doi.org/10.31436/iiumej.v23i1.1816Keywords:
biochar, biomass conversion, adsprotion, wastewaterAbstract
Heavy metals are hazardous to health at certain levels. Currently, heavy metals are removed by physicochemical treatments, such as adsorption, flotation, and electrochemical deposition, and also biological treatments, such as algal biofilm reactor and anaerobic ammonium oxidation. In this study, magnetic biochar was produced to enhance the effectiveness and performance of the adsorbent for heavy metal removal. This study aimed to synthesise high-performance magnetic biochar, to determine the optimum parameters and conditions for high yield of magnetic biochar and high removal of cadmium (Cd2+) from aqueous solution, and to determine the adsorption kinetics and isotherms for Cd2+ removal. Nickel oxide (NiO)-impregnated sugarcane bagasse was subjected to slow pyrolysis to produce magnetic biochar. The impregnated metal, pyrolysis temperature, and pyrolysis time were varied to determine the optimum parameters and conditions to produce high-performance magnetic biochar. The removal of Cd2+ from aqueous solution and batch adsorption study were conducted. The synthesised magnetic biochar was characterised using field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier transform infrared (FTIR), and vibrating sample magnetometer (VSM). The adsorption data agreed well with the pseudo-second-order model and followed the Langmuir isotherm model. This study achieved 88.47% removal efficiency of Cd2+ from aqueous solution. Thus, the removal of this heavy metal as a human carcinogen reduces the hazardous effects on human health and reduces the toxicity in the environment.
ABSTRAK: Logam berat adalah berbahaya bagi kesihatan di peringkat tertentu. Pada masa ini, logam berat disingkirkan melalui rawatan fizikokimia, seperti penyerapan, pengapungan, dan deposit elektrokimia, dan rawatan biologikal, seperti reaktor biofilem alga dan oksidasi ammonium anerobik. Kajian ini menghasilkan biochar magnetik bagi meningkatkan keberkesanan dan prestasi penyerapan penyingkiran logam berat. Kajian ini bertujuan bagi mengsintesis biochar magnetik pada prestasi tinggi, bagi menghasilkan parameter optimum dan keadaan pengeluaran tinggi biochar magnetik dan penyingkiran tinggi kadmium (Cd2+) daripada larutan akues, dan bagi mendapatkan penyerapan kinetik dan isoterma penyingkiran Cd2+. Nikel oksida (NiO)-impregnat hampas tebu adalah berdasarkan pirolisis perlahan bagi menghasilkan biochar magnetik. Logam yang terimpregnat, suhu pirolisis dan tempoh pirolisis dipelbagaikan bagi mendapatkan parameter optimum dan keadaan bagi menghasilkan biochar magnetik berprestasi-tinggi. Penyingkiran Cd2+ daripada larutan akues dan kajian penyerapan berkumpulan telah dibuat. Biochar magnetik yang disentisis diklasifikasikan menggunakan mikroskopi elektron imbasan medan-pancaran (FESEM), tenaga sebaran X-ray (EDX), pembelauan X-ray (XRD), kawasan permukaan Brunauer-Emmett-Teller (BET), Penjelmaan Fourier inframerah (FTIR), dan sampel getaran magnetometer (VSM). Data penyerapan menunjukkan persetujuan dengan model aturan-kedua-pseudo dan mengikuti model isoterma Langmuir. Kajian ini mencapai 88.47% keberkesanan penyingkiran Cd2+ daripada larutan akues. Oleh itu, penyingkiran logam berat ini sebagai karsinogen manusia mengurangkan kesan teruk pada kesihatan manusia dan pengurangan toksik pada alam sekitar.
Downloads
Metrics
References
Li T, Su X, Yu X, Song H, Zhu Y, Zhang Y. (2018) La (OH) 3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. Bioresource Technology, 263: 207-213. DOI: https://doi.org/10.1016/j.biortech.2018.04.108
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125: 365-385. DOI: https://doi.org/10.1016/j.envint.2019.01.067
Reguyal F, Sarmah AK, Gao W. (2017) Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution. Journal of Hazardous Materials, 321: 868-878. DOI: https://doi.org/10.1016/j.jhazmat.2016.10.006
Hao Z, Wang C, Yan Z, Jiang H, Xu H. (2018) Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere, 211: 962-969. DOI: https://doi.org/10.1016/j.chemosphere.2018.08.038
Wang S, Gao B, Li Y, Creamer AE, He F. (2017) Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. Journal of Hazardous Materials, 322: 172-181. DOI: https://doi.org/10.1016/j.jhazmat.2016.01.052
Wang B, Jiang YS, Li FY, Yang DY. (2017) Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresource Technology, 233: 159-165. DOI: https://doi.org/10.1016/j.biortech.2017.02.103
Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN. (2019) Mechanism and health effects of heavy metal toxicity in humans. Poisoning in the modern world-new tricks for an old dog, 10.
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M., ... & Bray, F. (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8): 1941-1953. DOI: https://doi.org/10.1002/ijc.31937
Franken C, Koppen G, Lambrechts N, Govarts E, Bruckers L, Hond ED, Loots I, Nelen V, Sioen I, Nawrot TS, Baeyans W, Larebeke NV, Boonen F, Ooms D, Wevers M, Jacobs G, Covaci A, Schettgen T, Schoeters G. (2017) Environmental exposure to human carcinogens in teenagers and the association with DNA damage. Environmental Research, 152: 165-174. DOI: https://doi.org/10.1016/j.envres.2016.10.012
Kazeminezhad I, Mosivand S. (2017) Elimination of copper and nickel from wastewater by electrooxidation method. Journal of Magnetism and Magnetic Materials, 422: 84-92. DOI: https://doi.org/10.1016/j.jmmm.2016.08.049
Suto R, Ishimoto C, Chikyu M, Aihara Y, Matsumoto T, Uenishi H, Yasuda T, Fukumoto Y, Waki M. (2017) Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere, 167: 300-307.
Naeem M, Mujahid M, Umer A, Ahmad S, Ahmad G, Ali J, ... & Khalid I. (2019) New trends in removing toxic metals from drinking and wastewater by biomass materials and advanced membrane technologies. J. Bio. Env. Sci, 15(3): 10-17.
Suto R, Ishimoto C, Chikyu M, Aihara Y, Matsumoto T, Uenishi H, Yasuda T, Fukumoto Y, Waki M. (2017) Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere, 167: 300-307. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.121
Bani-Melhem K, Al-Shannag M, Alrousan D, Al-Kofahi S, Al-Qodah Z, Al-Kilani MR. (2017) Impact of soluble COD on grey water treatment by electrocoagulation technique. Desalination and Water Treatment, 89: 101-110. DOI: https://doi.org/10.5004/dwt.2017.21379
Hom-Diaz A, Jaén-Gil A, Bello-Laserna I, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P. (2017) Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Science of the Total Environment, 592: 1-11. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.224
Hülsen T, Barry EM, Lu Y, Puyol D, Keller J, Batstone DJ. (2016) Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Research, 100: 486-495. DOI: https://doi.org/10.1016/j.watres.2016.04.061
Domingues A, Rosa IC, da Costa JP, Rocha-Santos TA, Gonçalves FJ, Pereira R, Pereira JL. (2020) Potential of the bivalve Corbicula fluminea for the remediation of olive oil wastewaters. Journal of Cleaner Production, 252: 119773. DOI: https://doi.org/10.1016/j.jclepro.2019.119773
Joseph L, Jun BM, Flora JR, Park CM, Yoon Y. (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229: 142-159. DOI: https://doi.org/10.1016/j.chemosphere.2019.04.198
Kamzon MA, Abderafi S, Bounahmidi T. (2016) Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. International Journal of Hydrogen Energy, 41: 20880-20896. DOI: https://doi.org/10.1016/j.ijhydene.2016.07.035
Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J. (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcan and blue agave bagasses. Chemical Engineering Research and Design. 107: 91-101. DOI: https://doi.org/10.1016/j.cherd.2015.10.015
Zhang Y, Song X, Xu Y, Shen H, Kong X, Xu H. (2019) Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210: 366-375. DOI: https://doi.org/10.1016/j.jclepro.2018.11.041
Deng CH, Gong JL, Zeng GM, Niu CG, Niu QY, Zhang W, Liu HY. (2014) Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. Journal of Hazardous Materials, 276: 66-76 DOI: https://doi.org/10.1016/j.jhazmat.2014.05.011
Jiang W, Xing Y, Zhang L, Guo X, Lu Y, Yang M, ... & Wei G. (2021) Polyethylenimine?modified sugarcane bagasse cellulose as an effective adsorbent for removing Cu (II) from aqueous solution. Journal of Applied Polymer Science, 138(7): 49830. DOI: https://doi.org/10.1002/app.49830
Reitz JR, Milford FJ, Christy RW. (2008) Foundations of Electromagnetic
Theory, 4th edn. Addison-Wesley Publishing Company.
Foo KY, Hameed BH. (2012) Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresource Technology, 111: 425-432. doi:10.1016/j.biortech.2012.01.141 DOI: https://doi.org/10.1016/j.biortech.2012.01.141
Zhu T, Chen JS, Lou XW. (2012) Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area. The Journal of Physical Chemistry C, 116(12): 6873-6878. doi:10.1021/jp300224s DOI: https://doi.org/10.1021/jp300224s
Collard FX, Bensakhria A, Drobek M, Volle G, Blin J. (2015) Influence of impregnated iron and nickel on the pyrolysis of cellulose. Biomass and Bioenergy, 52-62. DOI: https://doi.org/10.1016/j.biombioe.2015.04.032
Chen B, Zhou D, Zhu L. (2008) Transitional adsorption and partition of nonpolar
and polar aromatic contaminants by biochars of pine needles with different
pyrolytic temperatures. Environ. Sci. Technol., 42: 5137-5143
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.