A Study on the Terrestrial Mobility of a Spherical Amphibian Robot

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.2964

Keywords:

spherical robot, terrestrial motion, pendulum, Biped-line walking robot, obstacle-navigation, locomotion, drive torque

Abstract

Amphibian spherical robots are an appealing and practical alternative that can move around on different surfaces and function in aquatic environments. Spherical robots boast remarkable mobility and robustness, enabling them to navigate and perform exploration and reconnaissance tasks even in challenging or harsh environments. This paper explores assessing the terrestrial travel capabilities of a proposed amphibian spherical robot. A rapid Prototyping machine (RPM) was used to print the prototype’s main shell, yoke, and circuit holders. One main circuit was built on the yoke, while the other was positioned in the bottom shell. The driving principle used the barycentre offset notion, in which a pendulum mass is used to vary the location of the mass to generate a motion. Additional mass is added to the pendulum to determine the robot’s performance when mass is altered. The results reveal that the robot can travel on land with a maximum velocity of 40.75 degrees per second while carrying 600 grams of weight and a turning angle of 22.8 degrees. The robot can only move when the additional mass exceeds 400 grams.   

ABSTRAK: Robot sfera amfibia ialah satu alternatif menarik dan praktikal yang dapat bergerak di atas permukaan berbeza dan berfungsi dalam persekitaran akuatik. Robot sfera mempunyai mobiliti yang luar biasa dan tahan lasak. Ciri ini membolehkannya bergerak dan menjalankan tugas penerokaan dan peninjauan dalam persekitaran merbahaya atau buruk. Kajian ini adalah bagi menganalisis prestasi robot sfera amfibia ketika bergerak di darat. Mesin Pemprototaip Pantas (RPM) digunakan bagi mencetak badan utama prototaip, yok, dan pemegang litar. Satu litar utama dibina pada yok, manakala satu lagi diletakkan di bahagian bawah. Prinsip pemanduan adalah dengan menggunakan konsep penentuan kedudukan pusat jisim, di mana jisim pendulum digunakan bagi menentukan lokasi jisim sambil menghasilkan gerakan. Berat tambahan pada jisim pendulum ditambah bagi mendapatkan prestasi robot apabila jisim diubah. Dapatan kajian menunjukkan robot dapat bergerak atas darat dengan halaju maksimum 40.75 darjah sesaat sambil membawa 600 gram berat dengan sudut pusingan sebanyak 22.8 darjah. Robot hanya boleh bergerak apabila tambahan jisim melebihi 400 gram.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

L. Shi, S. Su, S. Guo, K. Tang, S. Pan, Y. he, H. Xing, Z. Chen, and P. Guo. (2017) A fuzzy PID control method for the underwater spherical robot. 2017 IEEE International Conference on Mechatronics and Automation (ICMA)., 626–631. DOI: https://doi.org/10.1109/ICMA.2017.8015889

O. Lang (2010). The dangers of mining around the world. BBC News, Retrieved from https://www.bbc.com/news/world-latin-america-11533349

Y. Li, M. Yang, H. Sun, Z. Liu, and Y. Zhang. (2018) A Novel Amphibious Spherical Robot Equipped with Flywheel, Pendulum, and Propeller. J. Intell. Robot. Syst., 89(3–4):485–501. DOI: https://doi.org/10.1007/s10846-017-0558-x

S. Radu (2019). The Top 5 Deadliest Disasters in 2019. U.S.News, Retrieved from https://www.usnews.com/news/best-countries/slideshows/5-of-the-deadliest-natural-disasters-in-2019?slide=6

L. DeMunno (2018). 9 natural disasters that took the lives of hundreds of thousands. Business Insider US, Retrieved from https://www.businessinsider.my/worst-natural-disasters-2018-7/?r=US&IR=T

S. Guo, Y. Liu, L. Shi, P. Guo, H. Xing, X. Hou, Z. Chen, S. Su, and H. Liu. (2018) Binocular Camera-based a Docking System for an Amphibious Spherical Robot. 2018 IEEE International Conference on Mechatronics and Automation (ICMA)., 1621–1626. DOI: https://doi.org/10.1109/ICMA.2018.8484518

G. S. Soh, S. Foong, and K. Wood. (2017) De-coupled dynamics control of a spherical rolling robot for waypoint navigation. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)., 562–567.

A. Nakashima, S. Maruo, R. Nagai, and N. Sakamoto. (2018) 2-Dimensional Dynamical Modeling and Control of Spherical Robot Driven by Inner Car. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).,1846–1851. DOI: https://doi.org/10.1109/ROBIO.2018.8664896

J. Kim, T. Kim, and S. C. Yu. (2018) Conceptual Design of a Spherical Underwater Vehicle Equipped with Vertically Rotatable Thruster Units. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV)., 1–4. DOI: https://doi.org/10.1109/AUV.2018.8729789

M. T. Andani, S. Shahmiri, H. Pourgharibshahi, K. Yousefpour, and M. H. Imani. (2018) Fuzzy-Based Sliding Mode Control and Sliding Mode Control of a Spherical Robot. IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society., 2534–2539. DOI: https://doi.org/10.1109/IECON.2018.8591640

J. V. Raj, K. Lashmi, and R. Shanmughasundaram. (2018) Design of a spherical robot with improved stability for planetary exploration. J. Adv. Res. Dyn. Control Syst., 10(3):1001–1005.

S. Guo, Y. He, L. Shi, S. Pan, R. Xiao, K. Tang, and P. Guo. (2018) Modeling and experimental evaluation of an improved amphibious robot with compact structure. Robot. Comput. Integr. Manuf., 51:37–52. DOI: https://doi.org/10.1016/j.rcim.2017.11.009

L. Geng, Z. Hu, Y. Lin, R. Yi, and C. Wang. (2015) A new concept spherical underwater robot with high mobility. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)., 887–890. DOI: https://doi.org/10.1109/CYBER.2015.7288061

L. Jia, Z. Hu, L. Geng, Y. Yang, and C. Wang. (2016) The concept design of a mobile amphibious spherical robot for underwater operation. 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)., 411–415. DOI: https://doi.org/10.1109/CYBER.2016.7574860

H. Xing, S. Guo, L. Shi, X. Huo, S. Su, Z. Chen, Y. Liu, and H. Liu. (2018) Performance Evaluation of a Multi-Vectored Water-Jet Propellers Device for an Amphibious Spherical Robot. 2018 IEEE International Conference on Mechatronics and Automation (ICMA)., 1591–1596. DOI: https://doi.org/10.1109/ICMA.2018.8484441

X. Hou, S. Guo, L. Shi, H. Xing, Y. Liu, H. Liu, Y. Hu, D. Xia, and. Z. Li. (2019) Hydrodynamic analysis-based modeling and experimental verification of a new water-jet thruster for an amphibious spherical robot. Sensors, 19 (2): 259. DOI: https://doi.org/10.3390/s19020259

H. Xing, S. Guo, L. Shi, X. Hou, Y. Liu, and H. Liu. (2019) Design, modeling and experimental evaluation of a legged, multi-vectored water-jet composite driving mechanism for an amphibious spherical robot. Microsyst. Technol., 1–13. DOI: https://doi.org/10.1007/s00542-019-04536-7

B. Alexey, K. Alexander, K. Yury, and K. Anton. (2019) Stabilization of the motion of a spherical robot using feedbacks. Appl. Math. Model., 69: 583–592. DOI: https://doi.org/10.1016/j.apm.2019.01.008

B. B. Dey and M. Jenkin. (2018) Spherico: rapid prototyping a spherical robot. 2018 IEEE International Conference on Information and Automation (ICIA)., 957–962. DOI: https://doi.org/10.1109/ICInfA.2018.8812351

Y. Ping, S. Hanxu, Q. Zhongjiang, and C. Jiazhen. (2016) Design and Motion Control of a Spherical robot with Stereovision. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)., 1276–1282. DOI: https://doi.org/10.1109/ICIEA.2016.7603781

M. Taheri Andani, Z. Ramezani, S. Moazami, J. Cao, M. M. Arefi, and H. Zargarzadeh. (2018) Observer-Based Sliding Mode Control for Path Tracking of a Spherical Robot. Complexity, 2018:1-15. DOI: https://doi.org/10.1155/2018/3129398

Q. Zhan. (2015) Motion planning of a spherical mobile robot. Motion and Operation Planning of Robotic Systems. Springer., 361–381. DOI: https://doi.org/10.1007/978-3-319-14705-5_12

S. Gajbhiye and R. N. Banavar. (2016) Geometric modeling and local controllability of a spherical mobile robot actuated by an internal pendulum. Int. J. Robust Nonlinear Control, 26(11):2436–2454. DOI: https://doi.org/10.1002/rnc.3457

M. Roozegar, M. Ayati, and M. J. Mahjoob. (2017) Mathematical modelling and control of a nonholonomic spherical robot on a variable-slope inclined plane using terminal sliding mode control. Nonlinear Dyn., 90(2):971–981. DOI: https://doi.org/10.1007/s11071-017-3705-9

N. Muraleedharan, D. S. Cohen, and D. R. Isenberg. (2016) Omnidirectional locomotion control of a pendulum driven spherical robot. SoutheastCon 2016.,1–6. DOI: https://doi.org/10.1109/SECON.2016.7506648

S. Asiri, F. Khademianzadeh, A. Monadjemi, and P. Moallem. (2019) The Design and Development of a Dynamic Model of a Low-Power Consumption, Two-Pendulum Spherical Robot. IEEE/ASME Trans. Mechatronics., 24(5): 2406–2415. DOI: https://doi.org/10.1109/TMECH.2019.2934180

K. Landa and A. K. Pilat. (2015) Design and start-up of spherical robot with internal pendulum. 2015 10th International Workshop on Robot Motion and Control (RoMoCo)., 27–32. DOI: https://doi.org/10.1109/RoMoCo.2015.7219709

K. Landa and A. K. Pilat. (2016) Design of a controller for stabilization of spherical robot’s sideway oscillations. 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).,484–489. DOI: https://doi.org/10.1109/MMAR.2016.7575183

I. Ciufolini and J. A. Wheeler. (1995) Gravitation and inertia, Princeton university press., 101. DOI: https://doi.org/10.1515/9780691190198

S. Lindström. (2019) Lectures on engineering mechanics: statics and dynamics.

M. B. Bahar, S. S. Abdullah, M. S. M. Aras, N. F. Ibrahimjee, F. N. Zohedi, M. H. Harun, A. A. Yusof, and M. K. Aripin. (2022) A Spherical Amphibian Underwater Robot: Preliminary Mechanical Design. 2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications (USYS)., 1–6. DOI: https://doi.org/10.1109/USYS56283.2022.10073225

M. B. Bahar, S. S. Abdullah, M. S. M. Aras, and F. N. Zohedi. (2022) Spherical Amphibian Robot Design with Novel Driving Principle. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020., 69–77. DOI: https://doi.org/10.1007/978-981-16-2406-3_6

Downloads

Published

2024-07-14

How to Cite

Bahar, M. B., Abdullah, S. S., Mohd Aras, M. S., Harun, M. H., Aripin, M. K., & Ali@Ibrahim, F. (2024). A Study on the Terrestrial Mobility of a Spherical Amphibian Robot. IIUM Engineering Journal, 25(2), 309–324. https://doi.org/10.31436/iiumej.v25i2.2964

Issue

Section

Mechatronics and Automation Engineering

Most read articles by the same author(s)