EMG BASED CONTROL OF WRIST EXOSKELETON

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2804

Keywords:

Myoelectronic, Control devices, Fuzzy Logic, PID controller, Exoskeleton wrist design

Abstract

The significance of human motion intentions in a designed exoskeleton wrist control hand is essential for stroke survivors, thus making EMG signals an integral part of the overall system is critically important. However, EMG is a nonlinear signal that is easily influenced by several errors from its surroundings and certain of its applications require close monitoring to provide decent outcomes. Hence, this paper proposes to establish the relationship between EMG signals and wrist joint angle to estimate the desired wrist velocity. Fuzzy logic has been selected to form a dynamic modelling of wrist movement for a single muscle at different MVC levels and double muscles at a similar MVC level. The physical model of the exoskeleton hand using Simmechanics Matlab software has been developed to validate the performance of the fuzzy logic output result from both dynamic modelling approaches. A PID controller has been developed to smooth the exoskeleton hand movement fluctuations caused by the fuzzy logic decision-making process. As a conclusion, results showed a strong relationship between EMG signals and wrist joint angle improved the estimation results of desired wrist velocity for both dynamic modelling approaches hence strengthened the prediction process by providing a myoelectronic control device for the exoskeleton hand.

ABSTRAK: Kepentingan dalam mengetahui kehendak gerakan pergelangan tangan manusia adalah penting untuk pesakit strok yang terselamat, justeru menjadikan isyarat EMG amat penting pada keseluruhan sistem. Walau bagaimanapun, EMG adalah isyarat tidak linear yang mudah dipengaruhi ralat sekitaran dan memerlukan pemantauan rapi bagi hasil yang baik. Oleh itu, kajian ini mencadangkan kewujudan hubungan antara isyarat EMG dan sudut sendi pergelangan tangan bagi menganggarkan halaju pergelangan tangan yang dikehendaki. Logik kabur (fuzzy logic) telah dipilih bagi membentuk model dinamik pergerakan pergelangan tangan pada otot tunggal di tahap MVC yang berbeza dan otot berganda pada tahap MVC yang serupa.  Model fizikal rangka luar tangan menggunakan perisian Matlab Simmekanik telah dibangunkan bagi mengesahkan prestasi Logik Kabur daripada kedua-dua pendekatan model dinamik. Pengawal PID telah dibangunkan bagi melicinkan gerakan turun naik tangan yang disebabkan proses membuat keputusan oleh Logik Kabur. Sebagai kesimpulan, dapatan kajian menunjukkan hubungan yang kukuh antara isyarat EMG dan sudut sendi pergelangan tangan. Ini meningkatkan anggaran dapatan halaju pergelangan tangan yang dikehendaki bagi kedua-dua pendekatan model dinamik seterusnya mengukuhkan proses ramalan melalui peranti kawalan mioelektronik rangka tangan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mohd Safirin Karis, Technical University of Malaysia Malacca

1Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka,

75450 Ayer Keroh, Melaka, Malaysia

Hyreil Anuar Kasdirin, Technical University of Malaysia Malacca

2 Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka,

76100 Durian Tunggal, Melaka, Malaysia, MALAYSIA

Norafizah Abas, Technical University of Malaysia Malacca

2 Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka,

76100 Durian Tunggal, Melaka, Malaysia, MALAYSIA.

Wira Hidayat Mohd Saad, Technical University of Malaysia Malacca

3Faculty of Electrical Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka,

76100 Durian Tunggal, Melaka, Malaysia, MALAYSIA.

References

McGowan B, “Industrial exoskeletons: what you’re not hearing,” Occup. Heal. Saf. Mag., vol. 1, 2018.

Wahit MAA, Ahmad SA. (2018) Design and development of low-cost exoskeleton hand robot structure. IEEE Student Conf. Res. Dev. Inspiring Technol. Humanit. SCOReD 2017 - Proc., vol. 2018-Jan, pp. 45-49. doi: 10.1109/SCORED.2017.8305423. DOI: https://doi.org/10.1109/SCORED.2017.8305423

Asogbon MG, Samuel OW, Jiang Y, Wang L, Geng Y, Sangaiah AK, Chen S, Fang P, and Li “Appropriate feature set and window parameters selection for efficient motion intent characterization towards intelligently smart emg-pr system,” Symmetry (Basel)., vol. 12, no. 10, pp. 1–20, 2020, doi: 10.3390/sym12101710. DOI: https://doi.org/10.3390/sym12101710

Zhang L, Qi W, Hu Y, and Chen Y, “Disturbance-observer-based fuzzy control for a robot manipulator using an EMG-driven neuromusculoskeletal model,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8814460. DOI: https://doi.org/10.1155/2020/8814460

Chen C, Guo W, Ma C, Yang Y, Wang Z, and Lin C, “Semg-based continuous estimation of finger kinematics via large-scale temporal convolutional network,” Appl. Sci., vol. 11, no. 10, 2021, doi: 10.3390/app11104678. DOI: https://doi.org/10.3390/app11104678

Mendez V, Pollina L, Artoni F and Micera S, “Deep learning with convolutional neural network for proportional control of finger movements from surface EMG recordings,” Int. IEEE/EMBS Conf. Neural Eng. NER, vol. 2021-May, pp. 1074–1078, 2021, doi: 10.1109/NER49283.2021.9441095. DOI: https://doi.org/10.1109/NER49283.2021.9441095

Kilic E, Dogan E. (2017) Design and fuzzy logic control of an active wrist orthosis. Proc. Inst. Mech. Eng. Part H J. Eng. Med., 231(8): 728-746. doi: 10.1177/0954411917705408. DOI: https://doi.org/10.1177/0954411917705408

Xu F, Zheng Y, and Hu X, “Estimation of joint kinematics and fingertip forces using motoneuron firing activities: A preliminary report,” Int. IEEE/EMBS Conf. Neural Eng. NER, vol. 2021-May, pp. 1035–1038, 2021, doi: 10.1109/NER49283.2021.9441433. DOI: https://doi.org/10.1109/NER49283.2021.9441433

Behrens M, Husmann F, Moeller AM, Schlegel J, Reuter EM, and Zschorlich1 VR, “Neuromuscular properties of the human wrist flexors as a function of the wrist joint angle,” Front. Bioeng. Biotechnol., vol. 7, no. AUG, 2019, doi: 10.3389/fbioe.2019.00181. DOI: https://doi.org/10.3389/fbioe.2019.00181

Kim S, Shin DY, Kim T, Lee S, Hyun JK, Park SM. (2022) Enhanced recognition of amputated wrist and hand movements by deep learning method using multimodal fusion of electromyography and electroencephalography. Sensors, 22(2): 1-17.

doi: 10.3390/s22020680. DOI: https://doi.org/10.3390/s22020680

Lara J, Paskaranandavadivel N, and Cheng LK, “HD-EMG Electrode Count and Feature Selection Influence on Pattern-based Movement Classification Accuracy,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 4787–4790, 2020, doi: 10.1109/EMBC44109.2020.9175210. DOI: https://doi.org/10.1109/EMBC44109.2020.9175210

Hayashi H, Shibanoki T, and Tsuji T, “A Neural Network Based on the Johnson SU Translation System and Related Application to Electromyogram Classification,” IEEE Access, vol. 9, pp. 154304–154317, 2021, doi: 10.1109/ACCESS.2021.3126348. DOI: https://doi.org/10.1109/ACCESS.2021.3126348

Subasi A and Qaisar SM, “Surface EMG signal classification using TQWT, Bagging and Boosting for hand movement recognition,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 7, pp. 3539–3554, 2022, doi: 10.1007/s12652-020-01980-6. DOI: https://doi.org/10.1007/s12652-020-01980-6

Copaci D, Serrano D., Moreno L, and Blanco D, “A high-level control algorithm based on sEMG signalling for an elbow joint SMA exoskeleton,” Sensors (Switzerland), vol. 18, no. 8, 2018, doi: 10.3390/s18082522. DOI: https://doi.org/10.3390/s18082522

Joseph SB, Dada EG, Abidemi A, Oyewola DO, and Khammas BM, “Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems,” Heliyon, vol. 8, no. 5, p. e09399, 2022, doi: 10.1016/j.heliyon.2022.e09399. DOI: https://doi.org/10.1016/j.heliyon.2022.e09399

Tageldeen MK, Perumal N, Elamvazuthi I, and Ganesan T, “Design and control of an upper arm exoskeleton using Fuzzy logic techniques,” 2016 2nd IEEE Int. Symp. Robot. Manuf. Autom. ROMA 2016, pp. 1–6, 2017, doi: 10.1109/ROMA.2016.7847838. DOI: https://doi.org/10.1109/ROMA.2016.7847838

Jia G, Lam HK, Liao J, Wang R. (2020) Classification of electromyographic hand gesture signals using machine learning techniques. Neurocomputing, 401: 236-248.

doi: 10.1016/j.neucom.2020.03.009. DOI: https://doi.org/10.1016/j.neucom.2020.03.009

Bardizbanian B, Zhu Z, Li J, Huang X, Dai C, Luna CM, McDonald BE, Farrell TR, and Clancy EA, “Efficiently Training Two-DoF Hand-Wrist EMG-Force Models,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 369–373, 2020, doi: 10.1109/EMBC44109.2020.9175675. DOI: https://doi.org/10.1109/EMBC44109.2020.9175675

Downloads

Published

2023-07-04

How to Cite

KARIS, M. S., KASDIRIN, H. A., ABAS, N., MOHD SAAD, W. H., & MOHD ARAS, M. S. (2023). EMG BASED CONTROL OF WRIST EXOSKELETON. IIUM Engineering Journal, 24(2), 391–406. https://doi.org/10.31436/iiumej.v24i2.2804

Issue

Section

Mechatronics and Automation Engineering

Most read articles by the same author(s)