3D COLLISION AVOIDANCE SYSTEM FOR UNMANNED AERIAL VEHICLE (UAV) WITH DECENTRALIZED APPROACH
DOI:
https://doi.org/10.31436/iiumej.v24i2.2803Keywords:
Decentralized 3D collision avoidance, unmanned aerial vehicle, rangefinderAbstract
Unmanned aerial vehicles UAVs have been developed and refined for decades. Using an integrated software system, autonomous unmanned aerial vehicles (UAVs) perform missions automatically and return to a pre-programmed point. Malaysia has a lot of unoccupied airspace, yet autonomous UAV applications and research are still rare. In critical conditions, autonomous UAVs must deal with a variety of environmental and flight issues. This project involves a decentralized 3D collision avoidance system for an autonomous UAV. Ultrasonic, infrared, and laser rangefinders were chosen for the 3D collision avoidance system. The UAV's obstacle recognition and collision avoidance performance are also tested in four experiments. In various flight conditions, the 3D collision avoidance system can identify several material types and opacities by integrating selected rangefinders. Finally, the 3D collision avoidance system quickly reacts to obstacles in the X, Y, and Z axes.
ABSTRAK: Kenderaan udara tanpa pemandu (UAV) telah dibangunkan dan diperhalusi selama beberapa dekad. Menggunakan sistem perisian bersepadu, kenderaan udara tanpa pemandu (UAV) autonomi melaksanakan misi secara automatik dan kembali ke titik pra-diprogramkan. Malaysia mempunyai banyak ruang udara yang tidak berpenghuni, namun aplikasi dan penyelidikan UAV autonomi masih jarang berlaku. Dalam keadaan kritikal, UAV autonomi mesti menangani pelbagai isu alam sekitar dan penerbangan. Projek ini melibatkan sistem pengelakan perlanggaran 3D terpencar untuk UAV autonomi. Pencari jarak ultrasonik, inframerah dan laser telah dipilih untuk sistem pengelakan perlanggaran 3D. Prestasi pengecaman halangan dan pengelakan perlanggaran UAV juga diuji dalam empat eksperimen. Dalam pelbagai keadaan penerbangan, sistem pengelakan perlanggaran 3D boleh mengenal pasti beberapa jenis bahan dan kelegapan dengan menyepadukan pencari jarak terpilih. Akhir sekali, sistem pengelakan perlanggaran 3D bertindak balas dengan cepat terhadap halangan dalam paksi X, Y dan Z.
Downloads
Metrics
References
Shokirov R, Abdujabarov N, Jonibek T, Saytov K, Bobomurodov S. (2020) Prospects of the development of unmanned aerial vehicles (UAVs). Tech. Sci. Innov., 2020(3): 4-8.
doi: 10.51346/tstu-01.20.3-77-0069. DOI: https://doi.org/10.51346/tstu-01.20.3-77-0069
Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M. (2019) Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7:48572–48634. doi: 10.1109/ACCESS.2019.2909530. DOI: https://doi.org/10.1109/ACCESS.2019.2909530
Ke Y, Wang K, Chen BM. (2018) Design and implementation of a hybrid UAV with model-based flight capabilities. IEEE/ASME Trans. Mechatronics, 23(3): 1114-1125.
doi: 10.1109/TMECH.2018.2820222. DOI: https://doi.org/10.1109/TMECH.2018.2820222
Magree D, Mooney JG, Johnson EN. (2014) Monocular visual mapping for obstacle avoidance on UAVs. J. Intell. Robot. Syst. Theory Appl., 74(1-2): 17-26. doi: 10.1007/s10846-013-9967-7. DOI: https://doi.org/10.1007/s10846-013-9967-7
Ferrera E, Alcántara A, Capitán J, Castaño AR, Marrón PJ, Ollero A. (2018) Decentralized 3D collision avoidance for multiple UAVs in outdoor environments. Sensors (Basel), 18(12): 1-20. doi: 10.3390/s18124101. DOI: https://doi.org/10.3390/s18124101
Eduardo Ferrera PJM, Capitan J, Castano AR. (2017) Decentralized safe con?ict resolution for multiple robots in dense scenario. Rob. Auton. Syst., 91: 179-193. DOI: https://doi.org/10.1016/j.robot.2017.01.008
Harun MH, Abdullah SS, Aras MSM, Bahar MB. (2022) Sensor fusion technology for unmanned autonomous vehicles (UAV): A review of methods and applications. IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), 2020:1-8. DOI: https://doi.org/10.1109/USYS56283.2022.10072667
Harun MH, Abdullah SS, Aras MSM, Bahar MB. (2021) Collision avoidance control for unmanned autonomous vehicles (UAV): Recent advancements and future prospects. Indian Journal of Geo Marine Sciences, 50(12): 873-883. DOI: https://doi.org/10.56042/ijms.v50i11.66746
Sarin P. (2013) DigitalLab Course Project EP 315, 1–22. DOI: https://doi.org/10.1093/glycob/cws001
Hughes R. (2019) Amazon fires: What’s the latest in Brazil?, BBC (Oct, 2019).
Administration FA. (2000) Aerodynamics of flight, Pilot Handbook Aeronautic Knowledge.
Hibbeler RC. (2013) Engineering Mechanics Statics, Thirteenth Edition.
Hibbeler RC. (2012) Engineering Mechanics Dynamics, Thirteenth Edition.
Pikalov S, Azaria E, Sonnenberg S, Ben-Moshe B, Azaria A. (2021) Vision-less sensing for autonomous micro-drones. Sensors, 21(16):5293. DOI: https://doi.org/10.3390/s21165293
Hamaza S, Georgilas I, Heredia G, Ollero A, Richardson T. (2020) Design, modeling, and control of an aerial manipulator for placement and retrieval of sensors in the environment. J. F. Robot., 37(7):1224–1245. DOI: https://doi.org/10.1002/rob.21963
Suprapto BY, Heryanto MA, Suprijono H, Muliadi J, Kusumoputro B. (2018) Design and development of heavy-lift hexacopter for heavy payload. International Seminar on Application for Technology of Information and Communication (iSemantic), 2018-January:242–246. doi: 10.1109/ISEMANTIC.2017.8251877. DOI: https://doi.org/10.1109/ISEMANTIC.2017.8251877
Ahmed MDF, Mohanta JC, Zafar MN. (2018) Development of smart quadcopter for autonomous overhead power transmission line inspections. Materials Today: Proceedings, 51:261-268. DOI: https://doi.org/10.1016/j.matpr.2021.05.271
Zhao T. (2018) Propulsive battery packs sizing for aviation applications. Master Theses.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.