Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.2385

Keywords:

FLC, MPPT, PI Controller, PV panel

Abstract

Due to the nonlinear property of the PV panels, there are a few significant restrictions and limitations in the PV solar system. The PV panels always have to depend on environmental conditions such as temperature and solar radiation to generate efficient power. This paper proposed an optimum control system that can handle the uncertainties and nonlinearities of any system by using the Fuzzy Logic Control system (FLC). The proposed system utilized an FLC system for a DC-DC boost converter, tracking the PV panel’s maximum power point (MPPT). A PI control system is also used to maintain the continuous power supply for an optimum battery charging system for the DC-DC Buck converter. The goal is to provide constant voltage and appropriate current for charging the battery. It will increase the system efficiency and reduce the losses. It would also increase the battery life cycle and help the battery to charge fast. There are several MPPT methods found in the literature. The FLC can make a precise decision by considering the environmental state of the system. It can get a response to nonlinear environmental conditions instantly. The proposed system yielded an expected accuracy of 92% to 96%, with a system efficiency of 76% to 83%. Besides, it does not require any knowledge about the system since it is a rule-based system. The entire system has been designed in MATLAB/Simulink. The simulation results have been analyzed under 9 environmental states in a 1.0 s period.

ABSTRAK: Berdasarkan struktur tak linear panel PV, terdapat beberapa faktor kekangan yang jelas dan had tertentu dalam sistem solar PV. Panel PV selalunya sering bergantung kepada kondisi persekitaran seperti suhu dan radiasi solar bagi menghasilkan tenaga optimum. Kajian ini mencadangkan sistem kawalan optimum yang dapat mengawal ketidaktentuan dan ketidak linearan apa-apa sistem menggunakan sistem Kawalan Logik Fuzi (FLC). Sistem yang dicadangkan ini menggunakan sistem FLC bagi penukaran penggalak DC-DC, mengesan titik tenaga maksimum panel PV (MPPT). Sistem Kawalan PI turut digunakan bagi menyediakan bekalan tenaga berterusan untuk sistem pengecas bateri optimum melalui penukaran Balik DC-DC. Matlamat adalah bagi menghasilkan voltan berterusan & arus mencukupi bagi mengecas bateri. Ia dapat meningkatkan kecekapan sistem dan mengurangkan pembaziran tenaga. Ia juga dapat meningkatkan kitaran hayat bateri dan membantu bateri mengecas dengan cepat. Terdapat beberapa kaedah MPPT dijumpai dalam kajian terdahulu. FLC dapat menghasilkan keputusan tepat dengan mengambil kira keadaan persekitaran pada sistem tersebut. Ia dapat memberi respon kepada keadaan persekitaran tak linear dengan serta merta. Sistem yang dicadangkan menghasilkan ketepatan yang dijangkakan sebanyak 92% hingga 96%, dengan kecekapan sistem sebanyak 76% hingga 83%. Selain itu, ia tidak memerlukan apa-apa pengetahuan tentang sistem tersebut kerana sistem ini berdasarkan aturan. Keseluruhan sistem dibangunkan menggunakan MATLAB/Simulink. Dapatan simulasi dikaji menggunakan 9 tahap persekitaran dalam tempoh 1.0 s.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aranya SDS, Sathyamoorthi S, Gandhiraj R. (2015) A fuzzy logic-based energy management system for a microgrid. ARPN Journal of Engineering and Applied Sciences, 10(6): 2663-2669.

Rai N, Rai B. (2018) Control of fuzzy logic-based PV-battery hybrid system for stand-alone DC applications. Journal of Electrical Systems and Information Technology, 5(2): 135-143. https://doi.org/10.1016/j.jesit.2018.02.007 DOI: https://doi.org/10.1016/j.jesit.2018.02.007

Greeshma VJ, Sasidharan R. (2016) Battery charging control using fuzzy based controller in a photovoltaic system, International Advanced Research Journal in Science, Engineering and Technology, Sp. Issue of National Conference on Emerging Trends in Engineering and Technology (NCETET’16), 3(3): 114-117. http://iarjset.com/upload/2016/si/NCETET-16/IARJSET-NCETET%2021.pdf

Yilmaz U, Kircay A, Borekci S. (2018) PV system fuzzy logic MPPT method and PI control as a charge controller. Renewable and Sustainable Energy Reviews, 81: 994-1001. https://doi.org/10.1016/j.rser.2017.08.048 DOI: https://doi.org/10.1016/j.rser.2017.08.048

Abdelhak B, Abdelhalim B, Layachi Z, Sief EB, Amor F. (2018) Fuzzy logic controller to improve photovoltaic water pumping system performance. 6th International Renewable and Sustainable Energy Conference (IRSEC), pp 1-5. DOI: 10.1109/IRSEC.2018.8702841 DOI: https://doi.org/10.1109/IRSEC.2018.8702841

Latif T, Hussain SR. (2015) Design of a charge controller based on SEPIC and buck topology using modified Incremental Conductance MPPT. 8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE 2014, 1: 824-827. https://doi.org/10.1109/ICECE.2014.7026999 DOI: https://doi.org/10.1109/ICECE.2014.7026999

Soufi Y, Bechouat M, Kahla S, Bouallegue K. (2014) Maximum power point tracking using fuzzy logic control for photovoltaic system. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, pp 902-906. https://doi.org/10.1109/ICRERA.2014.7016515 DOI: https://doi.org/10.1109/ICRERA.2014.7016515

Yau HT, Lin CJ, Liang QC. (2013) PSO based PI controller design for a solar charger system. The Scientific World Journal. https://doi.org/10.1155/2013/815280 DOI: https://doi.org/10.1155/2013/815280

Fannakh M, Ehafyani ML, Zouggar S. (2019) Hardware implementation of the fuzzy logic MPPT in an Arduino card using a Simulink support package for PV application. IET Renewable Power Generation, 13(3): 510-518. https://doi.org/10.1049/iet-rpg.2018.5667 DOI: https://doi.org/10.1049/iet-rpg.2018.5667

Chabni F, Taleb R, Benbouali A, Amin M. (2016). The application of fuzzy control in water tank level using Arduino. International Journal of Advanced Computer Science and Applications, 7(4): 261-265. https://doi.org/10.14569/ijacsa.2016.070432 DOI: https://doi.org/10.14569/IJACSA.2016.070432

Ali OAM, Ali AY, Sumait BS. (2015) Comparison between the effects of different types of membership functions on fuzzy logic controller performance. International Journal of Emerging Engineering Research and Technology, 3(3): 76-83.

Derrouazin A, Aillerie M, Mekkakia-Maaza N, Charles JP. (2017). Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system. Energy Conversion and Management, 148: 238-250. https://doi.org/10.1016/j.enconman.2017.05.046 DOI: https://doi.org/10.1016/j.enconman.2017.05.046

Noman AM, Addoweesh KE, Mashaly HM. (2012) A fuzzy logic control method for MPPT of PV systems. IECON Proceedings (Industrial Electronics Conference), pp 874-880. https://doi.org/10.1109/IECON.2012.6389174 DOI: https://doi.org/10.1109/IECON.2012.6389174

Motakabber, S. M. A., Alam, AHM Zahirul., Jamal, N. F., Khan, M. R. (2022). Characteristic Study for Wireless Charging System. Asian Journal of Electrical and Electronic Engineering, 2(1), 9–16.

Downloads

Published

2022-07-04

How to Cite

KHAN, M. R. ., Motakabber, S. M. A., Alam, A. Z., & WAFA , S. A. F. . (2022). Fuzzy Logic and PI Controller for Photovoltaic Panel Battery Charging System. IIUM Engineering Journal, 23(2), 138–153. https://doi.org/10.31436/iiumej.v23i2.2385

Issue

Section

Electrical, Computer and Communications Engineering