Performance Analysis of Predictive Functional Control for Automobile Adaptive Cruise Control System

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2341

Keywords:

Predictive Functional Control, Model Predictive Control, PID, Adaptive Cruise Control

Abstract

This paper presents the performance analysis of Predictive Functional Control (PFC) for Adaptive Cruise Control (ACC) application. To cope with multiple driving objectives of modern ACC systems such as passenger comfort, safe distancing, and fast time response, an advanced optimal controller such as Model Predictive Control (MPC) is often used. Nevertheless, MPC requires a high computation load due to its complex formulation and may overload the processing power of a microcontroller. Thus, the prime objective of this work is to propose a PFC algorithm as an alternative controller, while providing a formal comparison between MPC and the traditional Proportional Integral (PI) controller. A standard kinematic model for vehicle longitudinal dynamics was modelled and used to derive the control law of PFC. Since the open-loop dynamic of the derived transfer function is not stable, the second objective is to propose a pre-stabilized loop or cascade PFC structure for the system. A complete tuning procedure and analysis were presented. The simulation result shows that although MPC performance is the best for the ACC application with Root Mean Square Error (RMSE) of 1.4873, PFC has shown a promising response with RMSE of 1.5501, which is better compared to the PI controller with RMSE of 1.6219. All the imposed driving constraints such as maximum acceleration, maximum deceleration and safe distance were satisfied in the car following application. Thus, the findings from this work can become a good initial motivation to further explore the capability of the PFC algorithm for future ACC development. 

ABSTRAK: Kajian ini adalah berkenaan analisis prestasi Kawalan Fungsi Ramalan (PFC) aplikasi Kawalan Mudah Suai (ACC). Bagi memenuhi pelbagai keperluan objektif sistem pemanduan moden ACC seperti keselesaan penumpang, penjarakan selamat dan tindak balas pantas, kawalan optimum terbaru seperti Model Kawalan Ramalan (MPC) sering digunakan. Walau bagaimanapun, MPC memerlukan beban pengiraan tinggi kerana rumusnya yang kompleks dan mungkin mengakibatkan beban berlebihan kuasa pemprosesan mikrokawalan. Oleh itu, matlamat utama kajian ini adalah bagi mencadangkan algoritma PFC yang mempunyai pengiraan mudah sebagai kawalan alternatif, sementara menyediakan perbandingan formal antara MPC dan kawalan tradisional Berkadar Keseluruhan (PI). Oleh kerana model ini tidak stabil, objektif kedua adalah mencadangkan penggunaan struktur PFC berlapis bagi menstabilkan sistem terlebih dahulu sebelum algorithma kawalan digunakan atau dengan menggunakan struktur PFC secara berturut pada sistem. Prosedur lengkap dan terperinci untuk analisis PFC dibentangkan. Dapatan simulasi kajian menunjukkan walaupun prestasi MPC adalah baik bagi aplikasi ACC dengan Ralat Punca Min Kuasa Dua (RMSE) bernilai 1.4873, namun PFC menunjukkan tindak balas baik dengan RMSE bernilai 1.5501 berbanding kawalan PI yang mempunyai RMSE sebanyak 1.6219. Kesemua kekangan seperti pecutan dan nyahpecutan maksima, dan penjarakan selamat bertepatan dengan aplikasi kenderaan ini. Dengan itu, penemuan ini adalah motivasi awal yang baik bagi meneroka lebih jauh keupayaan algoritma PFC bagi membangun ACC pada masa hadapan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Jiang Y, Deng W, He R, Yang S, Wang S, Bian N. (2017) Hierarchical framework for adaptive cruise control with model predictive control method (No. 2017-01-1963). SAE Technical Paper. DOI: https://doi.org/10.4271/2017-01-1963

Rajamani R. (2011) Vehicle dynamics and control. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4614-1433-9

Haroon Z, Khan B, Farid U, Ali SM, Mehmood CA. (2019). Switching control paradigms for adaptive cruise control system with stop-and-go scenario. Arabian Journal for Science and Engineering, 44(3): 2103-2113. DOI: https://doi.org/10.1007/s13369-018-3346-4

Alomari K, Mendoza RC, Sundermann S, Goehring D, Rojas R. (2020). Fuzzy Logic-based Adaptive Cruise Control for Autonomous Model Car. In ROBOVIS (pp. 121-130). DOI: https://doi.org/10.5220/0010175101210130

Phan D, Amani AM, Mola M, Rezaei AA, Fayyazi M, Jalili M., ... Khayyam H. (2021). Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation. Sustainability, 13(18): 10113. DOI: https://doi.org/10.3390/su131810113

Takahama T, Akasaka D. (2018). Model predictive control approach to design practical adaptive cruise control for traffic jam. International Journal of Automotive Engineering, 9(3): 99-104. DOI: https://doi.org/10.20485/jsaeijae.9.3_99

Li SE, Jia Z, Li K, Cheng B. (2014). Fast online computation of a model predictive controller and its application to fuel economy–oriented adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 16(3): 1199-1209. DOI: https://doi.org/10.1109/TITS.2014.2354052

Guo L, Ge P, Sun D, Qiao Y. (2020). Adaptive cruise control based on model predictive control with constraints softening. Applied Sciences, 10(5): 1635. DOI: https://doi.org/10.3390/app10051635

Borek J, Groelke B, Earnhardt C, Vermillion C. (2019, July). Optimal control of heavy-duty trucks in urban environments through fused model predictive control and adaptive cruise control. In 2019 American Control Conference (ACC) (pp. 4602-4607). IEEE. DOI: https://doi.org/10.23919/ACC.2019.8814703

Awad N, Lasheen A, Elnggar M, Kamel A. (2022). Model predictive control with fuzzy logic switching for path tracking of autonomous vehicles. ISA transactions, 129: 193-205. DOI: https://doi.org/10.1016/j.isatra.2021.12.022

Rossiter JA. (2018). A first course in predictive control. CRC press. DOI: https://doi.org/10.1201/9781315272610

Nasiri Soloklo H. (2018). Predictive Functional Control for Tracking of Core Power Variations in Pressurized Water Reactor based on Laguerre functions and Reduced-Order Model. Modares Mechanical Engineering, 18(1): 299-306.

Li MY, Lu KD, Dai YX, Zeng GQ. (2020). Fractional-Order Predictive Functional Control of Industrial Processes with Partial Actuator Failures. Hindawi Complexity, 2020: 1-25. DOI: https://doi.org/10.1155/2020/4214102

Abdullah M, Rossiter JA. (2018). Input shaping predictive functional control for different types of challenging dynamics processes. Processes, 6(8): 118. DOI: https://doi.org/10.3390/pr6080118

Abdullah M, Rossiter JA, Ghaffar AFA. (2021). Improved constraint handling approach for predictive functional control using an implied closed-loop prediction. IIUM Engineering Journal, 22(1): 323-338. DOI: https://doi.org/10.31436/iiumej.v22i1.1538

Abdullah M, Rossiter JA. (2021). Using Laguerre functions to improve the tuning and performance of predictive functional control. International Journal of Control, 94(1): 202-214. DOI: https://doi.org/10.1080/00207179.2019.1589650

Rossiter JA, Aftab MS. (2021). A Comparison of Tuning Methods for Predictive Functional Control. Processes, 9(7): 1140. DOI: https://doi.org/10.3390/pr9071140

Zainuddin MAS, Abdullah M, Ahmad S, Tofrowaih KA. (2022). Performance Comparison Between Predictive Functional Control and PID Algorithms for Automobile Cruise Control System. International Journal of Automotive and Mechanical Engineering, 19(1): 9460-9468. DOI: https://doi.org/10.15282/ijame.19.1.2022.09.0728

Downloads

Published

2023-01-04

How to Cite

Zainuddin, M. A.-S., Abdullah, M., Ahmad, S., Uzir, M. S., & Ahmad Baidowi, Z. M. P. (2023). Performance Analysis of Predictive Functional Control for Automobile Adaptive Cruise Control System. IIUM Engineering Journal, 24(1), 213–225. https://doi.org/10.31436/iiumej.v24i1.2341

Issue

Section

Mechanical and Aerospace Engineering

Funding data

Most read articles by the same author(s)