IMPROVED CONSTRAINT HANDLING APPROACH FOR PREDICTIVE FUNCTIONAL CONTROL USING AN IMPLIED CLOSED-LOOP PREDICTION

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1538

Keywords:

Predictive functional control, PFC, constraints handling, implied closed-loop prediction, constrained predictive controller

Abstract

Predictive Functional Control is a simple alternative to the traditional PID controller which has the capability to handle process constraints more systematically. Nevertheless, the most basic form of PFC has suffered from ill-posed prediction due to its simplicity in formulation and assumption of constant future input dynamics. Although some constraints can be satisfied, nevertheless the performance may be very conservative due to this issue. The main objective of this paper is to improve the constrained performance of a PFC controller with a minimum modification of the existing formulation. Specifically, a novel constraint handling approach for PFC is proposed based on an implied closed-loop prediction. Instead of assuming a constant input as deployed in the conventional open-loop prediction, the implied closed-loop input dynamics are utilised to detect future constraint violations. In addition, a future perturbation is introduced into the prediction structure as an extra degree of freedom for satisfying the constraints. Two simulation results confirm that the proposed approach gives far less conservative constraint handling and thus better control performance compared to the nominal PFC. Furthermore, this novel implementation also alleviates the well-known tuning difficulties and prediction inconsistency issues that are associated with conventional PFC when handling constraints.

ABSTRAK: Kawalan Kefungsian Ramalan adalah alternatif mudah kepada kawalan tradisional PID yang mempunyai kekangan keupayaan bagi mengawal proses secara lebih tersusun. Namun, keadaan paling asas pada kesan PFC adalah daripada ramalan tak teraju-rapi yang disebabkan oleh formula ringkas dan anggapan dinamik input yang sama bagi masa depan. Walau kekangan ini dapat diatasi, namun prestasi akan berubah secara konservatif disebabkan oleh isu ini. Objektif utama kajian ini adalah bagi membaiki kekangan prestasi kawalan PFC dengan modifikasi minimum formula yang ada. Secara spesifik, pendekatan nobel kawalan PFC dicadangkan berdasarkan ramalan lingkaran-tertutup. Selain anggapan input tetap seperti yang dilakukan pada ramalan lingkaran-terbuka yang konservatif, dinamik input yang dibuat pada lingkaran-tertutup telah digunakan bagi mengesan kekangan masa depan yang bertentangan. Tambahan, gangguan yang bakal berlaku pada masa depan telah diperkenalkan ke dalam struktur ramalan sebagai tambahan darjah pada kebebasan bagi mengatasi kekangan. Dua dapatan simulasi kajian menyetujui pendekatan yang dicadangkan dan menyebabkan sangat kurang kekangan pengendalian pada sistem konservatif, oleh itu kawalan yang lebih bagus pada prestasi  berbanding pada PFC nominal. Selain itu, pendekatan nobel ini juga menghilangkan kesukaran pelarasan yang dikenali ramai dan ramalan isu tidak konsisten yang terdapat pada PFC konvensional apabila mengendali kekangan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Rossiter, J. A. (2018). A first course in predictive control. CRC press.

Haber, R., Bars, R., & Schmitz, U. (2012). Predictive control in process engineering: From the basics to the applications. John Wiley & Sons.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), pp 789-814.

Clarke, D. W., & Mohtadi, C. (1989). Properties of generalized predictive control. Automatica, 25(6), pp 859-875.

Richalet, J., & O'Donovan, D. (2009). Predictive functional control: principles and industrial applications. Springer Science & Business Media.

Richalet, J., & O'Donovan, D. (2011). Elementary predictive functional control: A tutorial. In 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP): May 2011; pp 306-313.

Richalet, J., Rault, A., Testud, J. L., & Papon, J. (1978). Model predictive heuristic control. Automatica (Journal of IFAC), 14(5), pp 413-428.

Khadir, M., & Ringwood, J. (2008). Extension of first order predictive functional controllers to handle higher order internal models. International Journal of Applied Mathematics and Computer Science, 18(2), pp 229-239.

Haber, R., Rossiter, J. A., & Zabet, K. (2016). An alternative for PID control: predictive functional control-a tutorial. In 2016 American Control Conference (ACC): July 2016; pp. 6935-6940

Richalet, J., Lavielle, G., Mallet, J., & Dreyfus, G. (2005). La commande prédictive. Eyrolles.

Fiani, P., & Richalet, J. (1991). Handling input and state constraints in predictive functional control. In Proceedings of the 30th IEEE Conference on Decision and Control: December 1991; pp. 985-990.

Abdullah, M., & Rossiter, J. A. (2019). Using Laguerre functions to improve the tuning and performance of predictive functional control. International Journal of Control, pp 1-13.

Rossiter, J. A., & Haber, R. (2015). The effect of coincidence horizon on predictive functional control. Processes, 3(1), pp 25-45.

Abdullah, M., Rossiter, J. A., & Haber, R. (2017). Development of constrained predictive functional control using Laguerre function based prediction. IFAC-PapersOnLine, 50(1), pp 10705-10710.

Khan, B., & Rossiter, J. A. (2013). Alternative parameterisation within predictive control: a systematic selection. International Journal of Control, 86(8), pp 1397-1409.

Muehlebach, M., & D'Andrea, R. (2017). Basis functions design for the approximation of constrained linear quadratic regulator problems encountered in model predictive control. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC): December 2017; pp. 6189-6196.

Gilbert, E. G., & Tan, K. T. (1991). Linear systems with state and control constraints: The theory and application of maximal output admissible sets. IEEE Transactions on Automatic control, 36(9), pp 1008-1020.

Scokaert, P. O., & Rawlings, J. B. (1998). Constrained linear quadratic regulation. IEEE Transactions on automatic control, 43(8), pp 1163-1169.

Valencia-Palomo, G., & Rossiter, J. A. (2012). Comparison between an auto-tuned PI controller, a predictive controller and a predictive functional controller in elementary dynamic systems. online publication, research gate.

Haber, R., Rossiter, J. A., & Zabet, K. (2016). An alternative for PID control: predictive functional control-a tutorial. In 2016 American Control Conference (ACC): July 2016; pp. 6935-6940.

Downloads

Published

2020-01-04

How to Cite

Abdullah, M., Rossiter , J. A., & Abdul Ghaffar, A. F. (2020). IMPROVED CONSTRAINT HANDLING APPROACH FOR PREDICTIVE FUNCTIONAL CONTROL USING AN IMPLIED CLOSED-LOOP PREDICTION . IIUM Engineering Journal, 22(1), 323–338. https://doi.org/10.31436/iiumej.v22i1.1538

Issue

Section

Mechanical and Aerospace Engineering