PRODUCTION AND STABILITY OF MYCO-FLOCCULANTS FROM LENTINUS SQUARROSULUS RWF5 AND SIMPLICILLIUM OBCLAVATUM RWF6 FOR REDUCTION OF WATER TURBIDITY

Authors

DOI:

https://doi.org/10.31436/iiumej.v19i1.843

Abstract

The production and stability of two novel myco-flocculants produced by river water fungus (RWF) were investigated. Screening tests were conducted to find suitable nutrients, pH, nutrient concentration, inoculum dose, and stability for two myco-flocculants L. squarrosulus (RWF5) and S. obclavatum (RWF6). The strains showed good flocculating activity in reducing turbidity of kaolin suspension while malt extract was used as nutrient source. Supernatants of RWF5 and RWF6 were able to reduce turbidity from 900±10 NTU to 46 NTU (95%) and 195 NTU (78%), respectively. In order to enhance the production, optimization of cultivation conditions were studied using a one-factor-at-a-time (OFAT) method. L. squarrosulus (RWF5) reduced 96% of turbidity at optimum conditions, comprising of 0.1% (w/v) malt extract, 3% (v/v) inoculum dose, and initial pH 7.0 for 6 days. The results of the compatible mixed culture showed good flocculation activity at 88% compared to a single culture of S. obclavatum at 78%. On the other hand, L. squarrosulus showed better turbidity reduction in the single culture rather than the mixed culture. The stability of L. squarrosulus and S. obclavatum supernatants showed excellent turbidity reduction over a wide pH range of 4-8 with the maximal flocculation rate of 96% and 90%, respectively, at pH 7.0. They also exhibited high turbidity removal ability in a temperature range of 4 oC – 55 oC for 24h with a maximum turbidity removal rate of 96% (RW5) and 87% (RW6) at 25 oC. Time stability of the L. squarrosulus supernatant showed good turbidity removal potential at above 90% at room temperature (28± 2 oC) and 85% at low temperature (4 oC) for 12 days. The high flocculating rate of the myco-flocculants and their good stability under wide range of temperature indicated their potentiality as biodegradable flocculants for water and wastewater treatment industry.

ABSTRAK: Keberhasilan dan kestabilan dua myco-gumpalan baharu oleh kulat air sungai (RWF) telah dikaji. Ujian penapisan telah dijalankan untuk mencari nutrien sesuai, pH, kepekatan nutrien, dos inokulum dan kestabilan dua myco-gumpalan L. squarrosulus (RWF5) dan S. obclavatum (RWF6). Rantaian menunjukkan aktiviti gumpalan yang baik dalam mengurangkan kekeruhan air sungai dengan penggantungan koalin di mana ekstrak malt telah digunakan sebagai sumber nutrien. Larutan supernatan RWF5 dan RWF6, masing-masing mampu mengurangkan kekeruhan dari 900±10 NTU kepada 46 NTU (95%) dan 195 NTU (78%). Bagi meningkatkan pengeluaran, keadaan optimum bagi menggalakkan hasil telah diselidiki menggunakan kaedah Satu Faktor pada Tiap Masa (OFAT). Pada takat optimum, L. squarrosulus (RWF5) mengurangkan 96% kekeruhan, ianya terdiri daripada ekstrak malt 0.1% (w/v), dos inokulum 3% (v/v) dan pH awal 7.0 selama 6 hari. Keputusan kultur campuran yang sesuai menunjukkan aktiviti penggumpalan yang baik pada 88% berbanding kultur sendirian S. obclavatum pada 78%. Pada waktu sama, L. squarrosulus menunjukkan pengurangan kekeruhan yang lebih baik dalam kultur sendirian berbanding kultur campuran. Kestabilan larutan supernatan L. squarrosulus dan S. obclavatum menunjukkan pengurangan kekeruhan yang sangat baik pada pH yang luas iaitu 4-8 dengan kadar maksimum kekeruhan pada 96% dan 90%, pada pH 7.0 masing-masing. Keduanya menunjukkan kebolehan penyingkiran kekeruhan yang tinggi pada skala suhu 4 oC – 55 oC selama 24 jam dengan kadar nyah kekeruhan maksimum pada 96% (RW5) dan 87% (RW6) pada suhu 25 oC. Kestabilan masa larutan supernatan L. Squarrosulus menunjukkan potensi penyingkiran kekeruhan terbaik atas 90% pada suhu bilik (28± 2 oC) dan 85% pada suhu rendah (4 oC) selama 12 hari. Kadar gumpalan yang tinggi oleh myro-gumpalan dan kestabilan yang baik pada julat suhu yang luas menunjukkan potensinya sebagai agen biodegradasi gumpalan kepada air dan industri rawatan loji air.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nessa X Jebun, International Islamic University Malaysia.

Ph.D Candidate, Department of Biotechnology Engineering

Abdullah Al Mamun, International Islamic University Malaysia

Professor, Department of Civil Engineering

Md. Zahangir Alam, International Islamic University Malaysia.

Professor, Department of Biotechnology Engineering

Raha Ahmad Raus, International Islamic University Malaysia.

Associate Professor, Department of Biotechnology Engineering

References

[1] Salehizadeh H, Shojaosadati SA. (2001) Extracellular biopolymeric coagulants: recent trends and biotechnological importance. Biotechnology Advances, 19(5):371-385.
[2] You Y, Ren N, Wang A, Ma F, Gao L, Peng Y, Lee D. (2008) Use of waste fermenting liquor to produce bioflocculants with isolated strains. International Journal of Hydrogen Energy, 33(13):3295-3301.
[3] Prakash N B, Sockan V, Jayakaran P. (2014) Waste water treatment by coagulation and flocculation. International J. of Engineering Science and Innovative Technology, 3(2):479-484.
[4] Yan C, Le L, Yan-Hong G, Zi-Wen X. (2013) Characteristics analysis of different coagulants in the removal of organic matters of raw yellow river water. Information Technology Journal, 12(20):5746-5750.
[5] Ruden C. (2004) Acrylamide and cancer risk- expert risk assessments and the public debate. Food and Chemical Toxicology, 42(3):335-349.
[6] Yang YN, Ren N, Xue JM, Yang J, Rong BL. (2007) Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus. Nuclear Instruments and Methods in Physics Research Section B, 262:220–224.
[7] Li Z, Zhong S, Lei HY, Chen RW, Yu Q, Li HL. (2009) Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresource Technology,100(14):3650-3656.
[8] Gong WX, Wang SG, Sun XF, Liu XW, Yue QY, Gao BY. (2008) Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresource Technology, 99(11):4668-4674.
[9] Aljuboori AH, Idris A, Al-joubory HH, Uemura Y, Abubakar BI. (2015) Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus. Journal of Environmental Management. 150:466-71.
[10] Gao Q, Zhu XH, Mu J, Zhang Y, Dong XW. (2009) Using Ruditapes philippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment. Bioresource Technology, 100(21):4996-5001.
[11] Subramanian SB, Yan S, Tyagi RD, Surampalli RY. (2008) A new, pellet-forming fungal strain: its isolation, molecular identification, and performance for simultaneous sludge-solids reduction, flocculation, and dewatering. Water Environment Research, 80(9):840-852.
[12] Alam MZ, Fakhru’l-Razi A. (2003) Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process. Water research, 37(5):1118-1124.
[13] Aljuboori AH, Idris A, Abdullah N, Mohamad R. (2013) Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresource Technology,12:489-493.
[14] More TT, Yadav JS, Yan S, Tyagi RD, Surampalli RY. (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 144:1-25.
[15] Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. (2015) Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules, 20(3):5239-5259.
[16] Subramanian SB, Yan S, Tyagi RD, Surampalli RY. (2010) Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Research, 44(7):2253-2266.
[17] Nwodo UU, Okoh AI. (2013) Characterization and flocculation properties of biopolymeric flocculant (Glycosaminoglycan) produced by Cellulomonas sp. Okoh. Journal of Applied Microbiology, 114(5):1325-37.
[18] Jebun N, Al-Mamun A, Alam MZ, Karim MI, Raus RA. (2015) Evaluation of entrapment potentiality and turbidity removal efficiency of filamentous fungi. Jurnal Teknologi, 77(24):23-28.
[19] Jebun N, Al-Mamun A, Alam MZ, Raus RA. (2016) Fungal Flocculants to Reduce Turbidity of River Water. ARPN Journal of Engineering and Applied Sciences, 11(6):4094-4099.
[20] Deng S, Yu G, Ting Y. (2005) Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids and Surfaces B: Biointerfaces, 44(4):179-186.
[21] Pu SY, Qin LL, Che JP, Zhang BR, Xu M. (2014) Preparation and application of a novel bioflocculant by two strains of Rhizopus sp. using potato starch wastewater as nutrilite. Bioresource Technology, 162:184-91.
[22] Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI. (2013) Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC biotechnology, 13(62):1-7.
[23] Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Hirano M, Taniguchi Y. (1994) Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Bioscience, Biotechnology, and Biochemistry, 58(2):428-429.
[24] Alam M, Fakhru'l-Razi A, Molla AH. (2004) Evaluation of fungal potentiality for bioconversion of domestic wastewater sludge. Journal of Environmental Sciences, 16(1):132-137.
[25] Aljuboori AH, Uemura Y, Osman NB, Yusup S. (2014) Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source. Bioresource Technology, 171:66-70.
[26] Shih I, Van Y, Yeh L, Lin H, Chang Y. (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 78(3):267-272.
[27] Pan Y, Shi B, Zhang Y. (2009) Research on flocculation property of bioflocculant PG.a21 Ca. Modern Applied Science, 3(6):106 - 112.

Downloads

Published

2018-06-01

How to Cite

Jebun, N. X., Mamun, A. A., Alam, M. Z., & Raus, R. A. (2018). PRODUCTION AND STABILITY OF MYCO-FLOCCULANTS FROM LENTINUS SQUARROSULUS RWF5 AND SIMPLICILLIUM OBCLAVATUM RWF6 FOR REDUCTION OF WATER TURBIDITY. IIUM Engineering Journal, 19(1), 48–58. https://doi.org/10.31436/iiumej.v19i1.843

Issue

Section

Chemical and Biotechnology Engineering

Most read articles by the same author(s)