FOG, degradation, POME, oil, optimization


The biodegradation of fat, oil, and grease (FOG) is important in water pollution control and wastewater management. In this study, the viability of FOG-degrading microorganisms on palm oil biodegradation was assessed. Seven strains capable of degrading FOG were isolated from palm oil mill effluent (POME). The potential bacterial strains were selected based on Tween-80-degrading ability. Micrococcus lylae strain DSM 20315 showed the highest growth compared to the other strains. Hence, it was selected for FOG degradation test. The biodegradability was performed as a function of pH (6, 7, 8), initial oil concentration (1, 3, 5% v/v), and inoculum concentration (2, 6, 10% v/v). Optimization of these parameters of palm oil degradation was studied using 2-level factorial design. The maximum oil degradation was 68%, obtained at pH 6, initial oil concentration 1 % v/v, and bacterial inoculum concentration of 10 % v/v. The lowest oil degradation obtained was 22%. The initial oil concentration followed by bacterial inoculum concentration enhanced the removal efficiency of FOG, but the pH level did not significantly promote the degradation rate. As a result, the optimum process conditions for maximizing oil degradation were at pH 6, initial oil concentration 1 %v/v, and bacterial inoculum concentration of 10 %v/v.

ABSTRAK:  Biodegradasi lemak, minyak, dan gris (FOG) adalah penting dalam kawalan pencemaran air dan rawatan air buangan. Kajian ini adalah berkenaan kebolehhidupan organisma pengurai-FOG dalam biodegradasi minyak kelapa sawit. Tujuh strain berkeupayaan mendegradasi FOG diasingkan daripada cairan buangan minyak kelapa sawit (POME). Strain bakteria yang berpotensi telah dipilih berdasarkan keupayaan degradasi-Geladak-80. Strain Mikrokokus lilae DSM 20315 menunjukkan pertumbuhan tertinggi berbanding strain lain. Oleh itu, ia dipilih bagi ujian degradasi FOG. Keupayaan biodegradasi telah dihasilkan berdasarkan fungsi pH (6, 7, 8) ketumpatan  awal minyak (1, 3, 5% v/v) dan ketumpatan inokulum (2, 6, 10% v/v). Parameter optimum degradasi minyak kelapa sawit dikaji menggunakan reka bentuk faktorial 2-tahap. Nilai maksimum degradasi minyak adalah sebanyak 68%, terhasil pada pH 6, berketumpatan awal 1% v/v, dan ketumpatan inokulum bakteria 10% v/v. Degradasi minyak terendah pula adalah sebanyak 22%. Ketumpatan awal minyak diikuti ketumpatan bakteria inokulum meningkatkan kecekapan penyingkiran  FOG, tetapi level pH tidak ketara dalam membantu kadar degradasi. Sebagai kesimpulan, keadaan optimum bagi degradasi minyak maksimum adalah pada pH 6, ketumpatan awal minyak 1% v/v dan ketumpatan bakteria inokulum sebanyak 10% v/v. 


Download data is not yet available.


Metrics Loading ...


Brooksbank AM, Latchford JW, Mudge SM. (2007) Degradation and modification of fats, oils and grease by commercial microbial supplements. World Journal of Microbiology and Biotechnology 23 (7): 977-985. doi: 10.1007/s11274-006-9323-1. DOI:

Shon HK, Tian D, Kwon DY, Jim CS, Lee TJ, Chung WJ. (2002) Degradation of fat, oil, and grease (FOGs) by lipase-producing bacterium Pseudomonas sp. strain D2D3. Journal of Microbiology and Biotechnology, 12(4): 583-591.

Williams JB, Clarkson C, Mant C, Drinkwater A, May E. (2012) Fat, oil and grease deposits in sewers: Characterisation of deposits and formation mechanisms. Water Research, 46(19): 6319–6328. doi: 10.1016/j.watres.2012.09.002. DOI:

Husain IAF, Alkhatib MF, Jammi MS, Mirghani MES, Zainudin Z, Hoda S. (2014) Problems, Control, and treatment of fat, oil, and grease (FOG): A Review. Journal of Oleo Science, 63(8): 747-752. doi: 10.5650/jos.ess13182. DOI:

Del Mundo DMN, Sutheerawattananonda M. (2017) Influence of fat and oil type on the yield, physico-chemical properties, and microstructure of fat, oil, and grease (FOG) deposits. Water Research, 124: 308-319. doi: 10.1016/j.watres.2017.07.047. DOI:

Ma J, Zhao QB, Laurens LLM, et al. (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnology for Biofuels, 8(1): 1-12. doi: 10.1186/s13068-015-0322-z. DOI:

Willey R. (2001) Fats, oils, and greases: The minimization and treatment of wastewaters generated from oil refining and margarine production. Ecotoxicology and Environmental Safety, 50 (2): 127–133. doi: 10.1006/eesa.2001.2081. DOI:

Abomohra AEF, Elsayed M, Esakkimuthu S, Sheekh ME. (2020) Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Progress in Energy and Combustion Science, 81: 100868.

doi: 10.1016/j.pecs.2020.100868. DOI:

He X, de los Reyes FL, Ducoste JJ. (2017) A critical review of fat, oil, and grease (FOG) in sewer collection systems: Challenges and control. Critical Reviews in Environmental Science and Technology, 47(13): 1191-1217. doi: 10.1080/10643389.2017.1382282. DOI:

Teixeira PD, Silva VS, Tenreiro R. (2020) Inegrated selection and identification of bacteria from polluted sites for biodegradation of lipids. International Microbiology, 23(3): 367-380. doi: 10.1007/s10123-019-00109-w. DOI:

Hong NT, Duyen NT, Diep CN. (2014) Isolation and Characterization of Lipid-Degrading Bacteria in Wastewater of Food Processing Plants and Restaurants in Can Tho City, Vietnam. American Journal of Life Sciences, 2(6): 382-388. doi: 10.11648/j.ajls.20140206.18. DOI:

Bhumibhamon O, Koprasertsak A, Funthong S. (2002) Biotreatment of High Fat and Oil Wastewater by Lipase Producing Microorganisms. Kasetsart J(NatSci), 36: 261-267.

Alias Z, Tan IKP. (2005) Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresource Technology, 96(11): 1229-1234. doi: 10.1016/j.biortech.2004.10.012. DOI:

Affandi IE, Suratman NH, Abdullah S, Ahmad WA, Zakaria ZA. (2014) Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. International Biodeterioration & Biodegradation, 95: 33-40. doi: 10.1016/j.ibiod.2014.04.009. DOI:

Kis Á, Laczi K, Zsíros S, Rákhely G, Perei, K. (2015) Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4. International Biodeterioration and Biodegradation, 105: 114-119. doi: 10.1016/j.ibiod.2015.08.015. DOI:

Kanmani P, Kumaresan K, Aravind J. (2015) Utilization of coconut oil mill waste as a substrate for optimized lipase production, oil biodegradation and enzyme purification studies in Staphylococcus pasteuri. Electronic Journal of Biotechnology, 18(1): 20-28. doi: 10.1016/j.ejbt.2014.11.003. DOI:

Iqbal SA, Rehman A. (2015) Characterization of lipase from Bacillus subtilis I-4 and its potential use in oil contaminated wastewater. Brazilian Archives of Biology and Technology 58(5): 789-797. doi: 10.1590/S1516-89132015050318. DOI:

Latha R, Kalaivani R. (2012) Bacterial Degradation of Crude Oil by Gravimetric Analysis. Analysis 3(5): 2789-2795.

Markossian S, Becker P, Märkl H, Antranikian G. (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an icelandic hot spring. Extremophiles?: life under extreme conditions 4 (6): 365–371. doi: 10.1007/s007920070006. DOI:

Sugimori D, Watanabe M, Utsue T. (2013) Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions. Applied Microbiology and Biotechnology 97(2): 871-880. doi: 10.1007/s00253-012-3982-7. DOI:

Tzirita M, Papanikolaou S, Chatzifragkou A, Quilty B. (2018) Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. and Pseudomonas putida. Engineering in Life Sciences 18(12): 932-942. doi: 10.1002/elsc.201800067. DOI:

Campbell MK, Farrell SO (2016) Biochemistry. Cengage Learning.




How to Cite

Fahmi Rashid Al Khatib, M., Alqedra, F., & Alam, M. Z. (2023). BIODEGRADATION OF FATS, OIL AND GREASE USING MICROORGANISMS ISOLATED FROM PALM OIL MILL EFFLUENT. IIUM Engineering Journal, 24(2), 1–10.



Chemical and Biotechnology Engineering