• Zafar ullah Koreshi Air University
  • Hamda Khan Lecturer in Department of Mathematics


Explosives concealed in small quatitites (~100 g), buried in landmines or in baggage, can be detected by characteristic gamma rays produced by neutron activation. However, the detection response can be reduced by attenuation of the signal in the background medium. This paper carries out a Monte Carlo simulation, using MCNP-V, to estimate the gamma signal spectrum and intesity degradation at a sodium iodide (NaI) detector from a small sample of trinitrotoluene (TNT) explosive buried in limestone. It is found that the transmission across 25 cm of limestone is ~6% of the 2.2233 MeV hydrogen signal and ~20% of the nitrogen signal. An empirical formula, obtained from MCNP re-runs, is used to estimate the signal strength from TNT, buried at 5-25 cm in limestone, for a californium source (252Cf) emitting 2.31 x 107 n/s. It is found that for TNT mass in the range 0.1-3 kg, the signatures are in the range 20-2000 s-1 from nitrogen and 24-2400 s-1 from hydrogen. These estimates can be used to determine the scanning time for an explosives detection system.


Download data is not yet available.

Author Biography

Zafar ullah Koreshi, Air University
Professor in Department of Mechatronics Engineering


[1] United Nations, Global Issues, last accessed 17 September 2016
[2] Walsh NE and Walsh WS (2003) Rehabilitation of landmine victims – the ultimate challenge, Bulletin of the World Health Organization. 81 (9): 665-670.
[3] Gozani T (2004) The role of neutron based inspection techniques in the post 9/11/01 era. Nucl. Instrum. Methods Phys. Res. B 213: 460–463.
[4] Jordan ED (1964) Detecting hidden explosives using neutron beams
Patent No. US 3146349 A, Aug 25, 1964.
[5] Bartko J (1974) Nuclear techniques for detecting the presence of explosives, Patent No. US 3832545 A Aug 27, 1974.
[6] Ettinger KV, Brondo JH Jr. (1989) Detection of nitrogen in explosives, Patent No.
US 4851687 A, Jul 25, 1989.
[7] Grenier G, Coursant RH, Rambaut M (1992) Apparatus for the detection of substances and in particular explosives by neutron irradiation thereof, Patent No.
US 5080856 A, Jan 14, 1992.
[8] Koltick D, Kim Y, McConchie S, Novikov I, Belbot M, Gardner G (2007) A Neutron Based Vehicle-borne Improvised Explosive Device Detection System. Nucl. Instrum. Methods Phys. Res. B 261: 277-280.
[9] Gokhale PP, Hussein EMA (1997) A 252Cf neutron transmission technique for bulk detection of explosives. Appl Radiat Isot, 48 : 973-979.
[10] Runkle RC, White TA, Miller EA, Caggiano JA, Collins BA (2009) Photon and Neutron Interrogation Techniques for Chemical Explosives Detection in Air Cargo: A Critical Review. Nucl Instrum Methods Phys Res A 603: 510- 528.
[11] Lehnert AL, Kearfott KJ (2015) A flag-based algorithm and associated neutron interrogation system for the detection of explosives in sea–land cargo containers. Radiat Phys Chem, 112: 13–21.
[12] Heider SA, Dunn WL (2015) A simulation study of fast neutron interrogation for standoff detection of improvised explosive devices. Radiation Physics and Chemistry. 116: 341–344, Proceedings of the 9th International Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications.
[13] Hussein EMA, Waller EJ (2000) Landmine detection: the problem and the challenge. Appl Radiat Isot, 53: 557-563.
[14] Buffler A., Contraband detection with fast neutrons, 2004. Radiation Physics and Chemistry. 71, Issues 3–4, October–November 2004, pp. 853–861, 9th Intl. Symp. Rad. Phys, (ISRP-9)
[15] Kuznetsov AV, Osetrov P, Stancl M (2006) Detection of Improvised Explosives (IE) and Explosive Devices (IED) in Detection and Disposal of Improvised Explosives, H. Schubert and A. Kuznetsov, Springer, Netherlands, 7-25.
[16] Lanza RC (2007) Neutron Techniques for Detection of Explosives in “Counterterrorist Detection Techniques of Explosives,” Yinon, J., Elsevier B.V., Netherlands, 131-155.
[17] Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radio Nuc Chem, 301: 629-639.
[18] Viesti G, Cinausero M, Cufaro-Petroni N, D’Erasmo G, Fabris D, Fioretto E, R, Lunardon M, Lazzizzera I, Nardelli G, Nardulli G, Nebbia G, Palomba M, Pantaleo A, Pappalardo L, Pesente S, Prati P, Prete G, Reito S, Sartori A, Tecchiolli G, Zavatarelli S, Filippini V. (1999) The EXPLODET project: advanced nuclear techniques for humanitarian demining. Nucl Instrum Methods Phys Res A, 422: 918-921.
[19] Viesti G, Lunardon M, Nebbia G, Barbui M, Cinausero M, D’Erasmo G, Palomba M, Pantaleo A, Obhođaš J, Valković V (2006) The detection of landmines by neutron backscattering: Exploring the limits of the technique. Appl Radiat Isot, 64: 706-716.
[20] Cinausero M, Lunardon M, Nebbia G, Pesente S, Viesti G, Filippini V (2004) Development of a thermal neutron sensor for Humanitarian Demining. Appl Radiat Isot, 61: 59-66.
[21] Csikai J, Dóczi R, Király B (2004) Investigations on landmine detection by neutron-based techniques. Appl Radiat Isot, 61: 11-20.
[22] Kuznetsov AV, Evsenin AV, Gorshkov IY, Osetrov OI, Vakhtin DN (2004) Detection of buried explosives using portable neutron sources with nanosecond timing. Appl Radiat Isot, 61: 51-57.
[23] Lunardon M, Nebbia G, Pesente S, Viesti G, Barbui M, Cinausero M, D’Erasmo G, Palomba M, Pantaleo A, Filippini A (2004) Detection of landmines by using 14 MeV neutron tagged beams. Appl Radiat Isot, 61: 43-49.
[24] Brooks FD, Drosg M, Buffler A, Allie MS (2004) Detection of anti-personnel landmines by neutron scattering and attenuation. Appl Radiat Isot, 61: 27-34.
[25] Brooks FD and Drosg M (2005) The HYDAD-D antipersonnel landmine detector. Appl Radiat Isot, 63: 565-674.
[26] Takahashi Y, Misawa T, Masuda K, Yoshikawa K, Takamatsu T, Yamauchi K, Yagi T, Pyeon CH, Shiroya S (2010) Development of landmine detection system based on the measurement of radiation from landmines. Appl Radiat Isot, 68: 2327-2334.
[27] Takahashi Y, Misawa T, Pyeon CH, Shiroya S, Yoshikawa K, (2011) Landmine detection method combined with backscattering neutrons and capture γ-rays from hydrogen. Appl Radiat Isot, 69: 1027-1032.
[28] Bergaoui A, Reguigui N, Gary CK, Brown C, Cremer JT, Vainionpaa JH, Piestrup MA (2014) Monte Carlo simulation of explosive detection system based on a Deuterium–Deuterium (D–D) neutron generator. Appl Radiat Isot, 94: 118-124.
[29] Girard SM, Shinn JB (2003) MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM.
[30] Maučec M and de Meijer RJ (2002) Monte Carlo simulations as a feasibility tool for non-metallic land-mine detection by thermal-neutron backscattering. Appl Radiat Isot, 56: 837-846.
[31] Mauc̆ec M, Rigollet, C., 2004. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis. Appl Radiat Isot, 61: 35-42.
[32] Perot, B., Carasco, C., Bernard, S., Mariani, A., Szabo, J. L., Sannie, G., Valkovic, V., Sudac, D., Viesti, G., Lunardon, M., Botosso, C., Nebbia, G., Pesente, S., Moretto, S., Zenoni, A., Donzella, A., Moszynski, M., Gierlik, M., Klamra, W., Tourneur, P. L., Lhuissier, M., Colonna, A., Tintori, C., Peerani, P., Sequeira, V., Salvato, M., 2008. Measurement of 14 MeV neutron-induced prompt gamma-ray spectra from 15 elements found in cargo containers. Appl Radiat Isot, 66: 421-434.
[33] Uchai, W., Changkian, S., Zhu, L. and Sun, H., 2008. Experiment on the Performance of the Neutron based Explosives Detection System using 252Cf. Suranaree J. of Sci. Tech. 15: 139-147.
[34] Elsheikh, N., Viesti, G., ElAgib, I., Habbani, F., 2012. On the use of a (252Cf–3He) assembly for landmine detection by the neutron back-scattering method. Appl Radiat Isot, 70: 643-649.
[35] Baysoy, D. Y. and Subasi, M., 2013. Numerical Evaluation of a Landmine Detection System based on the Neutron Back Scattering Technique. Academic Journals, 8: 1424-1430.
[36] Hernández-Adame,, P. L., Castro, D. M., Rodriguez-Ibarra, J. L., Luevano, M. A. S., Carrillo, H. R. V., Design of an explosive detection system using Monte Carlo method. Appl Radiat Isot, Available online 13 April 2016
[37] ElAgib I, Elsheikh N, AlSewaidan H, Habbani F (2009) Monte-Carlo simulations of elastically backscattered neutrons from hidden explosives using three different neutron sources. Appl Radiat Isot, 67: 39-45.
[38] Castro VA, Cavalieri TA, Siqueira PTD, Fedorenko GG, Coelho PRP, Filho TM (2011) MCNP Simulation to Study the BF3 Detection Efficiency, 2011 International Nuclear Atlantic Conference – INAC 2011 Belo Horizonte, M. G., Brazil, October 24-28, 2011 Associação Brasileira De Energia Nuclear- Aben ISBN:978-85-99141-04-5.
[39] Miri-Hakimabad H, Vejdani-Noghreiyan A, Panjeh H (2008) Improving the moderator geometry of an anti-personnel landmine detection system. Appl Radiat Isot, 66: 606-611.
[40] Metwally WA (2015) Multi-parameter optimization of a neutron backscattering landmine detection system, Appl Radiat Isot, 105: 290-293.
[41] Koreshi Z and Khan H (2016) Optimization of Moderator Design for Explosive Detection by Thermal Neutron Activation (TNA) using a Genetic Algorithm, J Nuc Eng Rad Sci, 2: 031018.
[42] Ochbelagh, R., D., Miri-Hakimabad H, Izadi-Najafabadi R (2007) The effect of source shield on landmine detection. Iran J Radiat Res, 4: 183-186.
[43] Loschke KW and Dunn WI (2010) Detection of chemical explosives using multiple photon signatures. Appl Radiat Isot, 68: 884-887.
[44] Brewer RL, Dunn WL, Heider S, Matthew C, Yang X (2012) The signature-based radiation-scanning approach to standoff detection of improvised explosive devices, Appl Radiat Isot, 70: 1181-1185.
[45] Khan H, Koreshi Z, Yaqub M (2016) Design sensitivity studies of a landmine explosive detection system based on neutron backscattering using Monte Carlo simulation, submitted for publication, Nucl Tech Rad Prot.
[46] Cacuci DG (2000) Nuclear Engineering Handbook, Springer.
[47] National Institute of Standards and Technology, U.S. Department of Commerce (NIST), 2016.
How to Cite
Koreshi, Z. ullah, & Khan, H. (2017). DETECTOR RESPONSE FROM THERMAL NEUTRON ACTIVATION OF CONCEALED EXPLOSIVES. IIUM Engineering Journal, 18(2), 177-188.
Engineering Mathematics and Applied Science