Radiation dose delivered by 125I, 103Pd and 131Cs and dose enhancement by gold nanoparticle (GNP) solution in prostate brachytherapy: a comparative analysis by Monte Carlo simulation
DOI:
https://doi.org/10.31436/iiumej.v20i2.1136Keywords:
monte carlo simulation, prostate cancer therapy, dose enhancement, gold nanoparticles, medicalAbstract
: The energy deposition and radiation dose from commonly used radioisotopes, 125I,103Pd, and 131Cs, used for brachytherapy of cancers is estimated using Monte Carlo (MC) simulations. To enhance the dose, gold nanoparticle (GNP) solutions are injected into the tumor; this results in more effective and shorter therapy duration. It is thus important to estimate the dose enhancement factor (DEF) achievable by a radioisotope. The research presented in this paper thus focuses on a comparative analysis of radioisotopes. To estimate the radiation dose, the Monte Carlo N-particle code MCNP5 was used for a coupled photon-electron simulation of radiation transport from radiation emanating from seeds of radioisotopes implanted in the prostate at positions prescribed to deliver effective doses to the tumor while protecting neighbouring vital organs such as the rectum and urethra. The quantities tallied were the energy deposition (F6 tally) and the pulse heights (*F8 tally) in specified energy bins. The energy deposited in the tumor was used to estimate the absorbed dose to the prostate incorporating the transformations of the radioisotopes during decay. The absorbed dose was subsequently estimated for a GNP-tissue solution with a concentration of 25 mg Au/g of prostate tissue, modelled as a homogenous mixture. From the simulations, it was found that the lifetime absorbed dose is ~96 Gy from 98 seeds, each of 0.31 mCi, of 125I; ~102 Gy, from 115 seeds, each of 1.4 mCi, of 103Pd, and ~90 Gy from 131Cs seeds replacing 103Pd seeds of the same initial activity. The main advantage of 131Cs, over 125I and 103Pd, is observed in the larger dose rate (~26 cGy/hr) delivered initially i.e. in the first few days which is 1.5 and 5.7 times higher than that for 103Pd and 125I. The absorbed dose for 125I, 103Pd and 131Cs increases to ~245, ~130, ~187 Gy respectively with GNP-tissue solution of 25 mg Au/g tissue. From the analysis, it is found that while the lifetime absorbed dose of all three radioisotopes is of the same order, there are advantages in using 131Cs; these advantages are further quantified.
ABSTRAK: Pemendapan tenaga dan dos sinaran radiasi daripada radioisotop yang biasa digunakan, 125I,103Pd, dan 131Cs, digunakan bagi terapibraki kanser dianggar menggunakan simulasi Monte Carlo (MC). Bagi meningkatkan dos, larutan partikel nano emas (GNP) telah disuntik ke dalam tumor; ini lebih memberi kesan dan mengurangkan masa terapi. Oleh itu, adalah penting menganggar faktor dos penggalak (DEF) dapat dicapai dengan radioisotop. Kajian ini mengfokuskan pada analisis perbandingan radioisotop. Bagi menganggarkan dos radiasi, kod Monte Carlo N-partikel MCNP5 telah digunakan pada simulasi pasangan foton-elektron pengangkutan radiasi daripada pancaran radioaktif benih radioisotop yang ditanam dalam prostat pada posisi yang disebut bagi mencetuskan dos penghantaran yang berkesan pada sel tumor. Dalam masa sama melindungi organ penting seperti rektum dan uretra. Kuantiti diselaras dengan pemendapan tenaga (selaras F6) dan ketinggian denyut (selaras *F8) dalam aras tenaga sebenar. Tenaga yang dienap dalam sel tumor ini telah digunakan bagi menganggarkan dos serapan pada prostat dengan menggabungkan transformasi radioisotop ketika susutan. Dos yang diserap telah kemudiannya dianggarkan bagi larutan tisu-GNP dengan ketumpatan 25 mg Au/g tisu prostat, dimodelkan sebagai campuran homogen. Daripada simulasi, dapatan kajian menunjukkan dos diserap sebanyak ~96 Gy daripada 98 benih, setiap satu daripada 0.31 mCi, 125I; ~102 Gy, dari 115 benih, setiap 1.4 mCi, dari 103Pd, dan ~90 Gy daripada benih 131Cs menggantikan benih 103Pd pada pemulaan aktiviti yang sama. Keistimewaan utama adalah 131Cs, ke atas 125I dan 103Pd, telah dilihat dalam kadar dos lebih besar (~26 cGy/hr) dikeluarkan pada pemulaannya iaitu dalam beberapa hari pertama iaitu 1.5 dan 5.7 kali lebih tinggi daripada 103Pd dan 125I. Dos yang diserap pada 125I, 103Pd dan 131Cs bertambah kepada ~245, ~130, ~187 Gy masing-masing dengan larutan tisu-GNP sebanyak 25 mg Au/g tisu. Hasil analisis menunjukkan penyerapan seumur hidup dos diserap pada ketiga-ketiga radioisotop dalam aturan yang sama, ini adalah keistimewaan menggunakan 131Cs; keistimewaan ini akan terus diuji pada masa depan dan diukur kuantitinya.
Downloads
Metrics
References
Common cancer types, national cancer institute [https://www.cancer.gov/types/common-cancers]
Worldwide cancer data, world cancer research fund. [https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data]
Yu E, Lewis C. (2018) Lung cancer brachytherapy. Current Cancer Therapy Reviews, 14(2): 137-148. https://doi:10.2174/1573394714666180208145420.
Blanchard P, Pugh TJ, Swanson DA, Mahmood U, Chen HC, Wang X, Graber WJ, Kudchadker RJ, Bruno T, Feeley T, Frank SJ. (2018) Patient-reported health-related quality of life for men treated with low-dose-rate prostate brachytherapy as monotherapy with 125-Iodine, 103-Palladium, or 131-Cesium: Results of a prospective phase ii study. Brachytherapy, 17( 2): 265-276. https://doi:10.1016/J.BRACHY.2017.11.007.
Rice SR, Olexa G, Hussain A, Mannuel H, Naslund MJ, Amin P, Kwok Y. (2019) A phase ii study evaluating bone marrow-sparing, image-guided pelvic intensity-modulated radiotherapy (IMRT) with Cesium-131 brachytherapy boost, adjuvant chemotherapy, and long-term hormonal ablation in patients with high risk, nonmetastatic prostate cancer. American Journal of Clinical Oncology, 42(3): 285-29. https://doi:10.1097/COC.0000000000000520.
Fahmi MR, Hashikin NA, Yeong CH, Guatelli S, Ng KH, Malaroda A, Rosenfeld AB, Perkins AC. (2019) Evaluation of organ doses following prostate treatment with permanent brachytherapy seeds: A geant4 Monte Carlo simulation study. Journal of Physics: Conference Series, 1248(1): 012049-012049. https://doi:10.1088/1742-6596/1248/1/012049.
Radioisotopes in medicine, world nuclear association [https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx]
Park DS. (2012) Current status of brachytherapy for prostate cancer. Korean Journal of Urology, 53(11): 743-749. https://doi:10.4111/kju.2012.53.11.743.
Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, Reilly RM, Pignol JP. (2013) A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Physics in Medicine and Biology, 58(10): 3075-3087. https://doi:10.1088/0031-9155/58/10/3075.
Stish BJ, Davis BJ, Mynderse LA, McLaren RH, Deufel CL, Choo R. (2018) Low dose rate prostate brachytherapy. Translational Andrology and Urology, 7(3): 341-356. https://doi:10.21037/tau.2017.12.15.
Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia MG, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch JP, Williams DC, Wright D, Yoshida H. (2006) Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1): 270-278. https://doi:10.1109/TNS.2006.869826.
Salvat F, José M, Sempau J. (2011) Penelope 2011: a code system for monte carlo simulation of electron and photon transport. Nuclear Energy Agency, doc(2011)5. https://www.oecd-nea.org/science/docs/2011/nsc-doc2011-5.pdf
Briesmeister JF. (2000) Mcnp: a general monte carlo n-particle transport code. version 4c, LA-13709-M. https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M
Kalos MH, Whitlock PA. (2008) Monte Carlo methods. Wiley-Blackwell, 2008, pp. 203-203.
Jain S, Hirst DG, O'Sullivan JM. (2012) Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology, 85(1010): 101-113. https://doi:10.1259/bjr/59448833.
Chatterjee DK, Wolfe T, Lee J, Brown AP, Singh PK, Bhattarai SR, Diagaradjane P, Krishnan S. (2013) Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Translational Cancer Research, 2(4): 256-268. https://doi:10.3978/j.issn.2218-676X.2013.08.10.
Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, Pignol JP. (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Physics in Medicine and Biology, 56(15):4631-4647. https://doi:10.1088/0031-9155/56/15/001.
Mesbahi A, Jamali F, Garehaghaji N. (2013) Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy," BioImpacts : BI, 3(1): 29-35. doi: 10.5681/bi.2013.002.
Asadi S, Vaez-zadeh M, Masoudi SF, Rahmani F, Knaup C, Meigooni AS. (2015) Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full monte carlo model of the human eye. Journal of Applied Clinical Medical Physics, 16(5): 344-357. doi: 10.1120/jacmp.v16i5.5568.
Banoqitah E, Djouider F. (2016) Dose distribution and dose enhancement by using gadolinium nanoparticles implant in brain tumor in stereotactic brachytherapy. doi: 10.1016/j.radphyschem.2016.06.002.
Kehwar TS. (2009) Use of cesium-131 radioactive seeds in prostate permanent implants. Journal of Medical Physics, 34(4): 191-193. https://doi:10.4103/0971-6203.56077.
Yu Y, Anderson LL, Li Z, Mellenberg DE, Nath R, Schell MC, Waterman FM, Wu A, Blasko JC. (1999) Permanent prostate seed implant brachytherapy: Report of the american association of physicists in medicine task group no. 64. Medical Physics, 26(10): 2054-2076. https://doi:10.1118/1.598721.
Awan SB, Hussain M, Dini SA, Meigooni AS. (2008) Historical review of interstitial prostate brachytherapy," vol. 5. http://ijrr.com/article-1-345-en.pdf
Yaparpalvi R. et al. (2007) Is Cs-131 or I-125 or Pd-103 the “ideal” isotope for prostate boost brachytherapy?– A dosimetric view point. International Journal of Radiation Oncology*Biology*Physics, 69(3): S677-S678. https://doi:10.1016/J.IJROBP.2007.07.2038.
Armpilia CI, Dale RG, Coles IP, Jones B, Antipas V. (2003) The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants. International Journal of Radiation Oncology, Biology, Physics, 55(2): 378-385. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12527051.
Bice WS, Prestidge BR, Kurtzman SM, Beriwal S, Moran BJ, Patel RR, Rivard MJ, Cesium Advisory G. (2008) Recommendations for permanent prostate brachytherapy with 131cs: A consensus report from the cesium advisory group. Brachytherapy, 7(4): 290-296. https://doi:10.1016/j.brachy.2008.05.004.
Wooten CE, Randall M, Edwards J, Aryal P, Luo W, Feddock J. (2014) Implementation and early clinical results utilizing Cs-131 permanent interstitial implants for gynecologic malignancies. Gynecologic Oncology, 133(2): 268-273. https://doi:10.1016/j.ygyno.2014.02.015.
Wernicke AG, Smith AW, Taube S, Yondorf MZ, Parashar B, Trichter S, Nedialkova L, Sabbas A, Christos P, Ramakrishna R, Pannullo SC, Stieg PE, Schwartz TH. (2016) Cesium-131 brachytherapy for recurrent brain metastases: Durable salvage treatment for previously irradiated metastatic disease. Journal of Neurosurgery, 126(4): 1212-1219. https://doi:10.3171/2016.3.jns152836.
Usgaonker SR. (2004) MCNP modeling of prostate brachytherapy and organ dosimetry. [Online]. Available: https://oaktrust.library.tamu.edu/handle/1969.1/305.
Almansa JF, Guerrero R, Al-Dweri FMO, Anguiano M, Lallena AM. (2006) Dose distribution in water for monoenergetic photon point sources in the energy range of interest in brachytherapy: Monte carlo simulations with penelope and geant4. [Online]. Available: http://fm137.ugr.es/PhotonPointSources/
Archambault JP, Mainegra-Hing E. (2015) Comparison between egsnrc, geant4, mcnp5 and penelope for mono-energetic electron beams. Physics in Medicine and Biology, 60(13): 4951-4962. https://doi:10.1088/0031-9155/60/13/4951.
Koivunoro H, Siiskonen T, Kotiluoto P, Auterinen I, Hippeläinen E, Savolainen S. (2012) "Accuracy of the electron transport in MCNP5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Medical Physics, 39(3): 1335-1344. https://doi:10.1118/1.3685446.
Šídlová V, Trojek T. (2010) Testing Monte Carlo computer codes for simulations of electron transport in matter. Applied Radiation and Isotopes, 68(4-5): 961-964. https://doi:10.1016/j.apradiso.2009.12.019.