Area-Based Rainfall Rate Model for Specific Attenuation in the Equatorial Region

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.3279

Keywords:

Rain gauge network, Areal rainfall analysis, Equatorial climate dynamics, Rainfall rate modelling, Satellite communication attenuation

Abstract

The advent of new telecommunication systems with large bandwidths like 5G/6G and satellites operating at higher frequency bands such as Ku, Ka-band, and even Q/V bands, has brought to the forefront the issue of rain attenuation, particularly in equatorial and tropical regions. Many existing models developed to address these inaccuracies in the rainfall rate prediction rely on a single rain gauge measurement, which still can lead to inaccuracy when the model is generalized for a larger area. This research, therefore, is of utmost importance as it aims to develop an area-based rainfall rate model using multiple rain gauges spread across many locations in a specific area. The area of focus for this research is the Klang Valley area, a crucial economic territory that includes the capital city, Kuala Lumpur, in Malaysia. Five rain gauges distributed in Klang Valley were chosen to measure the rainfall rate. The rainfall rate model was then developed based on the data from these five rain gauges. The results indicate that each rain gauge's rainfall rate at R0.01% exceedance level varied greatly from 102 mm/hr to 138 mm/hr and exceeded Malaysia's recommended ITU-R at 100 mm/hr. The new model, presented herein, accounts for the variation of rainfall rate across a larger area, which can provide accurate modeling of specific attenuation and rain attenuation in the equatorial regions, thereby enhancing the reliability of communication systems.

ABSTRAK: Kemunculan sistem telekomunikasi jalur lebar baru seperti 5G/6G dan satelit yang beroperasi pada jalur frekuensi tinggi seperti Ku, Ka-band, dan jalur Q/V, menyebabkan penurunan ketara amplitud gelombang akibat hujan, terutamanya di kawasan khatulistiwa dan tropika. Kebanyakan model sedia ada yang dibangunkan bagi menangani ketidak tepatan ramalan kadar hujan hanya berdasarkan pengukuran dari satu tolok hujan, ini menyebabkan ketidaktepatan model itu apabila digeneralisasikan bagi kawasan lebih luas. Oleh itu, kajian ini adalah amat penting kerana ia bertujuan bagi membangunkan model kadar hujan berasaskan kawasan menggunakan beberapa tolok hujan yang tersebar di pelbagai lokasi pada satu kawasan tertentu. Kawasan tumpuan kajian ini adalah kawasan Lembah Klang, sebuah wilayah ekonomi penting yang melingkupi ibu negara, Kuala Lumpur, Malaysia. Lima tolok hujan yang tersebar di Lembah Klang dipilih bagi mengukur kadar hujan. Model kadar hujan kemudiannya dibangunkan berdasarkan data dari kelima-lima tolok hujan ini. Dapatan menunjukkan kadar hujan R0.01% bagi lima tolok hujan adalah antara 102 mm/jam hingga 138 mm/jam dan melebihi kadar cadangan ITU-R Malaysia iaitu pada 100 mm/jam. Model baru yang mengambil kira variasi kadar hujan pada suatu kawasan lebih luas menggunakan banyak tolok hujan, di mana dapat memberikan pemodelan amplitud gelombang yang lebih tepat bagi hujan di kawasan khatulistiwa, dengan itu meningkatkan kebolehpercayaan sistem komunikasi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

B. Wang, LinHo, B. Wang, and LinHo, “Rainy Season of the Asian–Pacific Summer Monsoon*,” J. Clim., vol. 15, no. 4, pp. 386–398, Feb. 2002, doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2. DOI: https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

C.-P. Chang et al., “Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric Monsoon Transition,” J. Clim., vol. 18, no. 2, pp. 287–301, Jan. 2005, doi: 10.1175/JCLI-3257.1. DOI: https://doi.org/10.1175/JCLI-3257.1

S. A. Zabidi, I. M. Rafiqul, and A. K. Wajdi, “Rain attenuation prediction of optical wireless system in tropical region,” 2013 IEEE Int. Conf. Smart Instrumentation, Meas. Appl. ICSIMA 2013, no. November, pp. 26–27, 2013, doi: 10.1109/ICSIMA.2013.6717965. DOI: https://doi.org/10.1109/ICSIMA.2013.6717965

M. Alhilali, H. Y. Lam, and J. Din, “Comparison of Raindrop Size Distribution Characteristics across the Southeast Asia Region,” Telkomnika, vol. 16, no. 6, pp. 2522–2527, 2018, doi: 10.12928/TELKOMNIKA.v16i6.10091. DOI: https://doi.org/10.12928/telkomnika.v16i6.10091

K. H. D. Tang, “Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations,” Sci. Total Environ., vol. 650, no. October, pp. 1858–1871, 2019, doi: 10.1016/j.scitotenv.2018.09.316. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.316

K. N. H. and J. Din, “Rainfall Rate from Meteorological Radar Data for Microwave Applications in Malaysia,” in 2005 13th IEEE International Conference on Networks Jointly held with the 2005 IEEE 7th Malaysia International Conf on Communic, 2005, vol. 2, pp. 1008–1010, doi: 10.1109/ICON.2005.1635660. DOI: https://doi.org/10.1109/ICON.2005.1635660

I. Shayea, T. A. Rahman, M. H. Azmi, and M. R. Islam, “Real Measurement Study for Rain Rate and Rain Attenuation Conducted Over 26 GHz Microwave 5G Link System in Malaysia,” IEEE Access, vol. 3536, no. c, pp. 1–1, 2018, doi: 10.1109/ACCESS.2018.2810855. DOI: https://doi.org/10.1109/ACCESS.2018.2810855

W. S. Hee, H. S. Lim, M. Z. M. Jafri, S. Lolli, and K. W. Ying, “Vertical profiling of aerosol types observed across monsoon seasons with a Raman Lidar in Penang Island, Malaysia,” Aerosol Air Qual. Res., vol. 16, no. 11, pp. 2843–2854, 2016, doi: 10.4209/aaqr.2015.07.0450. DOI: https://doi.org/10.4209/aaqr.2015.07.0450

C. Capsoni, L. Luini, A. Paraboni, C. Riva, and A. Martellucci, “A New Prediction Model of Rain Attenuation That Separately Accounts for Stratiform and Convective Rain,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 196–204, Jan. 2009, doi: 10.1109/TAP.2008.2009698. DOI: https://doi.org/10.1109/TAP.2008.2009698

H. Y. Lam, L. Luini, J. Din., C. Capsoni, and A. D. Panagopoulos, “Stratiform and convective rain discrimination for equatorial region,” in 2010 IEEE Student Conference on Research and Development (SCOReD), Dec. 2010, pp. 112–116, doi: 10.1109/SCORED.2010.5703983. DOI: https://doi.org/10.1109/SCORED.2010.5703983

ITU-R P.838-3, “Specific attenuation model for rain for use in prediction methods,” Recomm. ITU-R P.838-3, pp. 1–5, 2005.

ITU-R P.837-7, “Characteristics of precipitation for propagation modelling P Series Radiowave propagation,” Radiowave Propag., vol. 6, 2017.

R. Singh and R. Acharya, “Development of a New Global Model for Estimating One-Minute Rainfall Rate,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6462–6468, Nov. 2018, doi: 10.1109/TGRS.2018.2839024. DOI: https://doi.org/10.1109/TGRS.2018.2839024

H. Y. Lam, L. Luini, J. Din, C. Capsoni, and A. D. Panagopoulos, “Assessment of seasonal Asia monsoon rain impact on the Earth-space propagation in equatorial Kuala Lumpur,” IEEE Antennas Propag. Soc. AP-S Int. Symp., pp. 1461–1464, 2012.

P. Chandrika, S. Vijaya Bhaskara Rao, N. V. P. Kirankumar, and T. Narayana Rao, “Review and testing analysis of Moupfouma rain rate model for Southern India,” J. Atmos. Solar-Terrestrial Phys., vol. 132, pp. 33–36, Sep. 2015, doi: 10.1016/J.JASTP.2015.06.010. DOI: https://doi.org/10.1016/j.jastp.2015.06.010

L. Csurgai-Horvath and J. Bito, “Rain Intensity Estimation Using Satellite Beacon Signal Measurements A Dual Frequency Study,” in 2018 International Symposium on Networks, Computers and Communications (ISNCC), Jun. 2018, pp. 1–5, doi: 10.1109/ISNCC.2018.8530986. DOI: https://doi.org/10.1109/ISNCC.2018.8530986

R. K. Das and N. R. Prakash, “Design of an improvised tipping bucket rain gauge for measurement of rain and snow precipitation,” Int. J. Instrum. Technol., vol. 1, no. 1, p. 44, 2011, doi: 10.1504/IJIT.2011.043597. DOI: https://doi.org/10.1504/IJIT.2011.043597

M. L. Tan and H. Santo, “Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia,” Atmos. Res., vol. 202, pp. 63–76, Apr. 2018, doi: 10.1016/j.atmosres.2017.11.006. DOI: https://doi.org/10.1016/j.atmosres.2017.11.006

R. Islam, T. A. Rahman, and Y. Karfaa, “Worst-month rain attenuation statistics for radio wave propagation study in Malaysia,” in 9th Asia-Pacific Conference on Communications (IEEE Cat. No.03EX732), 2003, pp. 1066–1069, doi: 10.1109/APCC.2003.1274262. DOI: https://doi.org/10.1109/APCC.2003.1274262

J. S. Mustapha, A; Nazri, F. A; Mandeep, “Kajian Pelemahan Hujan pada Jalur K u dan Jalur K a di Malaysia,” vol. 26, no. 2014, pp. 45–54, 2015.

H. M. Ibrahim, “General Specification for Tipping Bucket used by DID,” 2017.

HydroNET, “HydroNet. - Water Resources Management and Hydrology Division,” 2018. http://h2o.water.gov.my/v2/ (accessed Apr. 10, 2019).

M. C. Kestwal, S. Joshi, and L. S. Garia, “Prediction of rain attenuation and impact of rain in wave propagation at microwave frequency for tropical region (Uttarakhand, India),” Int. J. Microw. Sci. Technol., vol. 2014, 2014, doi: 10.1155/2014/958498. DOI: https://doi.org/10.1155/2014/958498

Downloads

Published

2024-07-14

How to Cite

Ahmad, Y. A., Ismail, A. F., Abdul Hamid, M. N. A., & Jamlos, M. F. (2024). Area-Based Rainfall Rate Model for Specific Attenuation in the Equatorial Region. IIUM Engineering Journal, 25(2), 287–298. https://doi.org/10.31436/iiumej.v25i2.3279

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)