Crack Tracking in Small-Diameter Metal Pipe Using Controlled Motor Vibrations and Flexible Sensor
DOI:
https://doi.org/10.31436/iiumej.v26i2.2988Keywords:
Guided wave, Pipe inspection, Metallic pipe structures, Non-destructive evaluation (NDE), Remaining useful life (RUL)Abstract
Metal pipes are the most integral part of transporting water, gas, and other petrochemical substances over long distances. Higher strength, durability (along with wear and corrosion resistance), and lower cost make these pipes suitable for extreme weather conditions and hostile environments. Over time, these pipes experience significant impacts that may lead to defects such as holes, cracks, bends, corrosion, and finally component failure and property losses. Therefore, early detection of the defects in pipes is crucial to prevent such failures. There are several methods to detect defects in metal pipes, including non-destructive testing (NDT). However, high costs and declining performance are existing concerns for those NDTs. A motor-induced vibration source is more robust and reliable than a conventional vibration sensor. Thus, the feasibility of using a motor as a vibration source for metal pipe crack detection is studied in this work. To achieve this, a DC motor is placed on one side of the metal pipe and used as the vibration source. These vibrations are collected by a piezoelectric polymer, specifically a Polyvinylidene fluoride (PVDF) sensor, on the other side of the pipe. This work considers three types of pipe conditions: healthy pipe, bent pipe, and cracked pipe. Additionally, two different sensor locations (180-degree rotation) and sensor patterns (bent and not bent) are studied. From the studies, we can see that there are significant differences in pressure responses for healthy pipe and cracked pipe conditions. The maximum pressure response for a cracked pipe is 783 a.u. (intensity) whereas it is just 262 a.u. for a healthy pipe. Thus, the difference is sufficient to set a threshold margin. We have set 300 a.u. as the threshold margin and applied it to an algorithm. The algorithm can successfully detect a healthy or cracked pipe. However, it is very tricky in the case of a bent pipe, as the pressure differences are less than 300 a.u. for three conditions and above for only one. Hence, it might provoke an incorrect decision when detecting a bent pipe.
ABSTRAK: Paip logam adalah bahagian utama dalam mengangkut air, gas, dan bahan petrokimia lain dalam jarak jauh. Kekuatan dan ketahanan tinggi (bersama rintangan hakisan dan penggunaan), dan kos lebih rendah menjadikan paip logam sesuai bagi keadaan cuaca dan persekitaran melampau. Walau bagaimanapun, dari masa ke masa, paip logam mengalami kesan ketara seperti berlubang, retak, bengkok, hakisan dan akhirnya kegagalan komponen dan kehilangan harta benda. Oleh itu, pengesanan awal kecacatan pada paip adalah sangat penting bagi mengelakkan kegagalan tersebut. Terdapat kaedah tidak merosakkan (NDT) bagi mengesan kecacatan pada paip logam. Walau bagaimanapun, kos yang tinggi dan prestasi merosot adalah kebimbangan sedia ada pada NDT. Sumber getaran dari motor adalah lebih berdaya tahan dan lebih dipercayai berbanding pengesan getaran konvensional. Oleh itu, kebolehlaksanaan motor sebagai sumber getaran bagi mengesan paip logam yang retak dikaji dalam kajian ini. Bagi tujuan ini, motor DC diletakkan pada satu sisi paip logam dan digunakan sebagai sumber getaran. Getaran ini dikumpul oleh pengesan polimer piezoelektrik Poliviniliden Fluorida (PVDF) pada bahagian lain paip. Tiga jenis keadaan paip, iaitu paip sihat, paip bengkok dan paip retak dipertimbangkan dalam kajian ini. Tambahan, dua lokasi pengesan berbeza (pada putaran 180 darjah) dan corak pengesan (bengkok dan tidak bengkok) dikaji. Dapatan kajian menunjukkan terdapat perbezaan ketara dalam tindak balas tekanan bagi paip berkeadaan sihat dan retak. Malah, tindak balas tekanan maksimum bagi paip retak adalah 783 a.u. (intensiti) sedangkan hanya 262 a.u. bagi paip sihat. Oleh itu, perbezaan ini cukup bagi menetapkan margin ambang. Kajian ini telah menetapkan 300 a.u. sebagai margin ambang dan menggunakannya pada algoritma. Algoritma ini berjaya mengesan paip sihat atau retak. Walau bagaimanapun, adalah sangat rumit bagi mengesan paip bengkok kerana perbezaan tekanan adalah kurang daripada 300 a.u. bagi tiga syarat tersebut. Oleh itu, ia mungkin mencetuskan keputusan yang salah bagi mengesan paip bengkok.
Downloads
Metrics
References
Zakikhani K, Nasiri F, Zayed T. A review of failure prediction models for oil and gas pipelines. Journal of Pipeline Systems Engineering and Practice. 2020 Feb 1;11(1):03119001.
Lu H, Behbahani S, Azimi M, Matthews JC, Han S, Iseley T. Trenchless construction technologies for oil and gas pipelines: State-of-the-art review. Journal of Construction Engineering and Management. 2020 Jun 1;146(6):03120001.
Coramik M, Ege Y. Discontinuity inspection in pipelines: A comparison review. Measurement. 2017 Dec 1;111:359-73.
http://phmsa.dot.gov/pipeline/library/data-stats (Available 26.12.2016).
Gas pipeline incidents, 9th report of the European Gas Pipeline Incident Data Group, (period 1970 – 2013), Doc. Number EGIG 25714.R.0403, February 2015.
Kishawy HA, Gabbar HA. Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping. 2010 Jul 1;87(7):373-80.
Tehranchi MM, Ranjbaran M, Eftekhari H. Double core giant magneto-impedance sensors for the inspection of magnetic flux leakage from metal surface cracks. Sensors and Actuators A: Physical. 2011 Nov 1;170(1-2):55-61.
Alobaidi WM, Alkuam EA, Al-Rizzo HM, Sandgren E. Applications of ultrasonic techniques in oil and gas pipeline industries: A review. American Journal of Operations Research. 2015;5(04):274.
P.E. Mix, Introduction to Nondestructive Testing a Training Guide, Wiley Inter Science, U.S.A, 2005.
Awal, M.R., Jusoh, M., Yahya, M.S., Rahman, S.A., Dagang, A.N., Latiff, N.A.A., Zakaria, H.A. and Saat, S., 2021. Acoustic wave propagation in high scale impedance mismatch mediums. IIUM Engineering Journal, 22(2), pp.1-9.
Awal MR, Jusoh M, Sabapathy T, Ahmad RB, Kamarudin MR, Osman MN, Ahmad MF, Rahman SA, Dagang AN. A Patternless Piezoelectric Energy Harvester for Ultra Low Frequency Applications. International Journal of Integrated Engineering. 2020 Oct 26;12(7):187-94.
Awal MR, Zakaria NA, Jusoh M, Abdelghany MA, Yahya MS, Zakaria HA. Warranty Seal Deformation Identification for Product Warranty Violation. Sensors. 2022 Jun 21;22(13):4688
Ho M, El-Borgi S, Patil D, Song G. Inspection and monitoring systems subsea pipelines: A review paper. Structural Health Monitoring. 2020 Mar;19(2):606-45.
Wang Q, Bi K, Hao Y, Guo L, Dong G, Wu H, Lei M. High-sensitivity dielectric resonator-based waveguide sensor for crack detection on metallic surfaces. IEEE Sensors Journal. 2019 Mar 25;19(14):5470-4.
Zhou X, Chen H, Hao T. Efficient detection of buried plastic pipes by combining GPR and electric field methods. IEEE Transactions on Geoscience and Remote Sensing. 2019 Feb 8;57(6):3967-79.
Memon, A.M., Imran, I.H. and Alhems, L.M., 2023. Neural network based corrosion modeling of Stainless Steel 316L elbow using electric field mapping data. Scientific Reports, 13(1), p.13088.
Rifai D, Abdalla AN, Razali R, Ali K, Faraj MA. An eddy current testing platform system for pipe defect inspection based on an optimized eddy current technique probe design. Sensors. 2017 Mar 13;17(3):579.
Santos, D., Machado, M.A., Monteiro, J., Sousa, J.P., Proença, C.S., Crivellaro, F.S., Rosado, L.S. and Santos, T.G., 2023. Non-Destructive Inspection of High Temperature Piping Combining Ultrasound and Eddy Current Testing. Sensors, 23(6), p.3348.
Guo W, Zhang X, Zhang D, Chen Z, Zhou B, Huang D, Li Q. Detection and classification of pipe defects based on pipe-extended feature pyramid network. Automation in Construction. 2022 Sep 1;141:104399.
Zhang, H., Ding, Z., Zhou, L. and Wang, D., 2023. Particle Filtering SLAM algorithm for urban pipe leakage detection and localization. Wireless Networks, pp.1-12.
Ékes C. New Developments in Multi-Sensor Condition Assessment Technologies for Large Diameter Pipe Infrastructure. InPipelines 2018 2018 Jul 12 (pp. 142-148). Reston, VA: American Society of Civil Engineers.
Lowe MJ, Alleyne DN, Cawley P. Defect detection in pipes using guided waves. Ultrasonics. 1998 Feb 1;36(1-5):147-54.
Guan R, Lu Y, Wang K, Su Z. Fatigue crack detection in pipes with multiple mode nonlinear guided waves. Structural Health Monitoring. 2019 Jan;18(1):180-92.
Zhao J, Durham N, Abdel-Hadi K, McKenzie CA, Thomson DJ. Acoustic guided wave techniques for detecting corrosion damage of electrical grounding rods. Measurement. 2019 Dec 1;147:106858.
Durham N, Zhao J, Bridges G, Thomson D. Acoustic guided wave detection of grounding rod corrosion: equivalent circuit model and implementation. Smart Materials and Structures. 2020 Apr 8;29(5):055040.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 IIUM Press

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2019/TK04/UMT/03/1