ACOUSTIC WAVE PROPAGATION IN HIGH SCALE IMPEDANCE MISMATCH MEDIUMS

Authors

  • Md Rabiul Awal Universiti Malaysia Terengganu https://orcid.org/0000-0002-9668-2733
  • Muzammil Jusoh Universiti Malaysia Perlis
  • Muhammad Syarifuddin Yahya Universiti Malaysia Terengganu
  • Salisa Abdul Rahman Universiti Malaysia Terengganu
  • Ahmad Nazri Dagang Universiti Malaysia Terengganu
  • Nurul Adilah Abdul Latiff Universiti Malaysia Terengganu https://orcid.org/0000-0002-9832-688X
  • Hidayatul Aini Zakaria Universiti Malaysia Terengganu
  • Shakir Saat Albukhary International University

DOI:

https://doi.org/10.31436/iiumej.v22i2.1563

Keywords:

Acoustic Energy Transfer, Acoustic Wave, Impedance Mismatch, ZnO, Multilayered Medium

Abstract

A finite element analysis of acoustic propagation in a multilayered medium is presented in this paper. A circular transmitter (diameter 14 mm, thickness 3 mm) and a rectangular receiver (20×10×0.5 mm3) are set to detect the variations in the propagation pattern. A complex medium (70×40×60 mm3) composed of skin, fat, muscle, bone and liquid is designed in a simulated environment. A scale of frequencies (10 kHz to 2 MHz) is applied to trace the impact on the propagation pattern as well. It is found from the analysis that fat and liquid layers affect the acoustic propagation the most (-69 dB), which results in a significant drop in the received sound pressure level at the receiving end. Again, other than skin and fat layers, low frequencies (less than 1 MHz) are more beneficial in terms of sound pressure level. However, higher frequencies contribute to lower displacements at the receiving end, which will cause less power potential as well.

ABSTRAK: Analisis elemen terhingga bagi penyebaran akustik dalam medium berlapis dibentangkan dalam kajian ini. Pemancar bulat (diameter 14 mm, ketebalan 3 mm) dan penerima segi empat tepat (20 × 10 × 0.5 mm3) diatur bagi mengesan perubahan pola penyebaran. Medium kompleks (70 × 40 × 60 mm3) yang terdiri daripada kulit, lemak, otot, tulang dan cecair direka dalam persekitaran simulasi. Skala frekuensi (10 kHz hingga 2 MHz) digunakan bagi mengesan corak penyebaran. Dapatan kajian menunjukkan bahawa lapisan lemak dan cecair mempengaruhi penyebaran akustik (-69 dB), yang mengakibatkan penurunan mendadak tahap penerimaan tekanan bunyi di hujung penerima. Selain lapisan kulit dan lemak, frekuensi rendah (kurang dari 1 MHz) adalah lebih berguna dari segi tahap tekanan suara. Walau bagaimanapun, frekuensi lebih tinggi menyebabkan kurang anjakan di hujung penerima, sekaligus mengurangkan potensi daya tenaga.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Solja?i? M. (2007) Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834): 83-86. DOI: https://doi.org/10.1126/science.1143254

doi: 10.1126/science.114325

Wang CS, Covic GA, Stielau OH. (2004) Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Transactions on Industrial Electronics, 51(1): 148-157. doi: 10.1109/TIE.2003.822038. DOI: https://doi.org/10.1109/TIE.2003.822038

Wang CS, Stielau OH, Covic GA. (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Transactions on Industrial Electronics, 52(5): 1308-1314.

doi: 10.1109/TIE.2005.855672. DOI: https://doi.org/10.1109/TIE.2005.855672

Waffenschmidt E, Staring T. (2009) Limitation of inductive power transfer for consumer applications. In 2009 13th European Conference on Power Electronics and Applications (pp. 1-10). IEEE.

Park C, Lee S, Cho GH, Rim CT. (2014) Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Transactions on Power Electronics, 30(2): 817-827. doi: 10.1109/TPEL.2014.2310232. DOI: https://doi.org/10.1109/TPEL.2014.2310232

Choi, BH, Lee ES, Kim JH, Rim CT. (2014) 7m-off-long-distance extremely loosely coupled inductive power transfer systems using dipole coils. In 2014 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 858-563). IEEE. DOI: https://doi.org/10.1109/ECCE.2014.6953487

Kim A, Ochoa M, Rahimi R, Ziaie B. (2015) New and emerging energy sources for implantable wireless microdevices. IEEE Access, 3: 89-98.

doi: 10.1109/ACCESS.2015.2406292. DOI: https://doi.org/10.1109/ACCESS.2015.2406292

Hu AP, Liu C, Li HL. (2008) A novel contactless battery charging system for soccer playing robot. In 2008 15th International Conference on Mechatronics and Machine Vision in Practice (pp. 646-650). IEEE. DOI: https://doi.org/10.1109/MMVIP.2008.4749606

Kline M, Izyumin I, Boser B, Sanders S. (2011) Capacitive power transfer for contactless charging. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 1398-1404). IEEE. DOI: https://doi.org/10.1109/APEC.2011.5744775

Ludois DC, Reed JK, Hanson K. (2012) Capacitive power transfer for rotor field current in synchronous machines. IEEE Transactions on Power Electronics, 27(11): 4638-4645. doi: 10.1109/TPEL.2012.2191160. DOI: https://doi.org/10.1109/TPEL.2012.2191160

Dai J, Ludois DC. (2015) Wireless electric vehicle charging via capacitive power transfer through a conformal bumper. In 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 3307-3313). IEEE. DOI: https://doi.org/10.1109/APEC.2015.7104827

Brown WC. (1984) The history of power transmission by radio waves. IEEE Transactions on Microwave Theory and Techniques, 32(9): 1230-1242.

doi: 10.1109/TMTT.1984.1132833. DOI: https://doi.org/10.1109/TMTT.1984.1132833

McSpadden JO, Mankins JC. (2002) Space solar power programs and microwave wireless power transmission technology. IEEE Microwave Magazine, 3(4): 46-57.

doi: 10.1109/MMW.2002.1145675. DOI: https://doi.org/10.1109/MMW.2002.1145675

Karalis A, Joannopoulos JD, Solja?i? M. (2008) Efficient wireless non-radiative mid-range energy transfer. Annals of Physics, 323(1):34-48. https://doi.org/10.1016/j.aop.2007.04.017 DOI: https://doi.org/10.1016/j.aop.2007.04.017

Raible DE, Dinca D, Nayfeh TH. (2011). Optical frequency optimization of a high intensity laser power beaming system utilizing VMJ photovoltaic cells. In 2011 International Conference on Space Optical Systems and Applications (ICSOS) (pp. 232-238). IEEE. DOI: https://doi.org/10.1109/ICSOS.2011.5783675

Cai M, Vahala K. (2000) Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration. Optics Letters, 25(4): 260-262.

https://doi.org/10.1364/OL.25.000260 DOI: https://doi.org/10.1364/OL.25.000260

Awal MR, Jusoh M, Sabapathy T, Kamarudin MR, Rahim RA. (2016) State-of-the-art developments of acoustic energy transfer. International Journal of Antennas and Propagation. https://doi.org/10.1155/2016/3072528 DOI: https://doi.org/10.1155/2016/3072528

Awal MR, Jusoh M, Ahmad RB, Sabapathy T, Yasin MNM, Mat MH. (2019) Designing cantilever dimension for low power wireless applications. Indonesian Journal Electrical Engineering and Computer Science, 14(2): 758-764. http://doi.org/10.11591/ijeecs.v14.i2.pp758-764 DOI: https://doi.org/10.11591/ijeecs.v14.i2.pp758-764

Downloads

Published

2021-07-04

How to Cite

Awal, M. R., Jusoh, M. ., Yahya, M. S., Rahman, S. A. ., Dagang, A. N. ., Abdul Latiff, N. A. ., Zakaria, H. A. ., & Saat, S. . (2021). ACOUSTIC WAVE PROPAGATION IN HIGH SCALE IMPEDANCE MISMATCH MEDIUMS. IIUM Engineering Journal, 22(2), 1–9. https://doi.org/10.31436/iiumej.v22i2.1563

Issue

Section

Chemical and Biotechnology Engineering