Biohydrogen Production in Semi-Continuous System Using Immobilized Cell Membrane

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.2957

Keywords:

Biohydrogen, semi-continuous system, Immobilization, membrane

Abstract

Hydrogen is considered to be the fuel of the future because of its high energy content (122 kJ/g), and water is the only byproduct of its use. Moreover, the production of hydrogen via fermentation of organic wastes is carbon neutral. This study was conducted to evaluate the performance of immobilized cells on PVDF membrane for biohydrogen production using a sequencing batch reactor by varying the hydraulic retention times (HRT) of the system and to compare the efficiency between suspended and attached systems on the production of biohydrogen. It was found that the biohydrogen fermentation performance was improved in a semi-continuous system, especially with immobilized cells. The optimum HRT that supports the highest biohydrogen yield was for an HRT of 12 hours, where the performance of hydrogen production was improved and in which the maximum hydrogen yield was achieved at 2.43 mol H2/mol and maximum hydrogen production rate (HPR) of 2.46 L H2/L.d as compared to other HRT for both systems. Therefore, the result of this study can be applied as the benchmark for scaling up the process.

ABSTRAK: Hidrogen boleh dianggap sebagai sumber tenaga penting pada masa hadapan kerana kapasiti tenaga yang tinggi (122 kJ/g) dan hanya air terhasil dari tindak balas hidrogen. Tambahan, sisa pengeluaran hidrogen melalui proses fermentasi sisa organik adalah bersifat semula jadi. Kajian ini dijalankan bagi mengkaji prestasi sel tidak bergerak pada membran PVDF bagi penghasilan biohidrogen menggunakan reaktor kelompok turutan dengan mengubah sistem masa pengekalan hidraulik (HRT) dan dengan membuat perbandingan kecekapan antara sistem yang tergantung dan sistem yang bersambung pada penghasilan biohidrogen. Dapatan kajian mendapati prestasi fermentasi diperbaharui di bawah sistem separa turutan terutama dengan sel tidak bergerak. Nilai optimum HRT yang mempunyai hasil biohidrogen tertinggi adalah pada ketika HRT 12 jam di mana prestasi penghasilan hidrogen dapat diperbaharui dan menghasilkan hidrogen tertinggi pada 2.43 mol H2/mol dan kadar penghasilan hidrogen maksimum (HPR) pada 2.46 L H2/L.d berbanding sistem HRT lain pada kedua-dua sistem. Oleh itu, dapatan kajian ini boleh digunakan sebagai penanda aras bagi kenaikan proses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hallenbeck P.C., (2009). Fermentative hydrogen production: principles, process, and prognosis. International Journal of Hydrogen Energy; 34: 7379-89 DOI: https://doi.org/10.1016/j.ijhydene.2008.12.080

Sinha P, Pandey A., (2011). An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy. 36:7460-7478. DOI: https://doi.org/10.1016/j.ijhydene.2011.03.077

Maarof, R.M., Md Jahim, J., Azahar, A.Z., Abdul, P.M., Masdar, M.S., Nordin, D., Abd. Nasir, M.A., (2018). Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy, 1-12 DOI: https://doi.org/10.1016/j.ijhydene.2018.06.013

Prawit Kongjan, Sompong O-Thong, Irini Angelidaki, (2011) Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules, Int. J. Hydrogen Energy 36 (21), 14261–14269, https://doi.org/10.1016/j.ijhydene.2011.06.130. DOI: https://doi.org/10.1016/j.ijhydene.2011.06.130

Engliman N.S., Jahim J.M., Abdul P.M., Ling T.P., Tan J.P., Ong C.B., (2019) Effectiveness of fouling mechanism for bacterial immobilization in polyvinylidene fluoride membranes for biohydrogen fermentation, Food Bioprod. Process 120; 48–57, https://doi.org/10.1016/j.fbp.2019.12.004. DOI: https://doi.org/10.1016/j.fbp.2019.12.004

Tasnim Sahrin, N., Shiong Khoo, K., Wei Lim, J., Shamsuddin, R., Musa Ardo, F., Rawindran, H., Hassan, M., Kiatkittipong, W., Alaaeldin Abdelfattah, E., Da Oh, W., et al. (2022). Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon–neutral future: A review. Bioresource Technology 364. DOI: https://doi.org/10.1016/j.biortech.2022.128088

Sompong O-Thong, Poonsuk Prasertsan, Nils-Kåre Birkeland, (2009). Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis, Bioresour. Technol. 100 (2), 909–918, https://doi.org/10.1016/j.biortech.2008.07.036. DOI: https://doi.org/10.1016/j.biortech.2008.07.036

Singh L., Wahid Z.A., (2015). Enhancement of hydrogen production from palm oil mill effluent via cell immobilization technique. International Journal of Energy Resource;39:215-22. DOI: https://doi.org/10.1002/er.3231

Wu K.J., Chang J.S., (2007). Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochemistry; 42:279-84. DOI: https://doi.org/10.1016/j.procbio.2006.07.021

Palazzi E, Fabiano B, Perego P., (2000). Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Engineering; 22:205 - 13. DOI: https://doi.org/10.1007/PL00009112

Bao, M. D., Su, H. J., & Tan, T. W. (2013). Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel, 112, 38–44. doi:10.1016/j.fuel.2013.04.063 DOI: https://doi.org/10.1016/j.fuel.2013.04.063

Fuess, L. T., Fuentes, L., Bovio-Winkler, P., Eng, F., Etchebehere, C., Zaiat, M., & Augusto Oller do Nascimento, C. (2021). Full details on continuous biohydrogen production from sugarcane molasses are unraveled: Performance optimization, self-regulation, metabolic correlations and quanti-qualitative biomass characterization. Chemical Engineering Journal, 414, 128934. doi:10.1016/j.cej.2021.128934 DOI: https://doi.org/10.1016/j.cej.2021.128934

Jamali NS, Md Jahim J. (2016). Optimization of thermophilic biohydrogen production by microflora of palm oil mill effluent: cell attachment on granular activated carbon as support media. Malays J Anal Sci.; 20:1437- 1446. DOI: https://doi.org/10.17576/mjas-2016-2006-24

Zur J., Wojcieszynska D., Guzik U. (2016). Metabolic Responses of Bacterial Cells to Immobilization. Molecules, 21, 958; doi:10.3390/molecules21070958 DOI: https://doi.org/10.3390/molecules21070958

R. Vilela, F.T. Saia, G.B. Gregoracci, R. Duarte, P. Andrade, B. van der Zaan, A. Langenhoff, M.H.R.Z. Damianovic, (2019). Hydrogen production in reactors: The influence of organic loading rate, inoculum and support material, Int. J. Hydrogen Energy 44 (50), 27259–27271, https://doi.org/10.1016/j.ijhydene.2019.08.180 DOI: https://doi.org/10.1016/j.ijhydene.2019.08.180

Chen, C., Lin, C., Chang, J., (2001). Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol;57:56-64. DOI: https://doi.org/10.1007/s002530100747

Lin, C.Y., Chou, C.H., (2004). Anaerobic hydrogen production from sucrose using an acid-enriched sewage sludge microflora. Eng. Life Sci. 4, 66–70. DOI: https://doi.org/10.1002/elsc.200400009

Valdez-Vazquez, I., Rios-Leal, E., Esparza-Garcia, F., Cecchi, F., Poggi-Varaldo, H.A., (2005). Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime.Int. J. Hydrogen Energy 30, 1383–1391. DOI: https://doi.org/10.1016/j.ijhydene.2004.09.016

Han, W., Hu, Y. Y., Li, S. Y., Li, F. F., & Tang, J. H. (2016). Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis. Bioresource Technology, 221, 318- 323. doi:10.1016/j.biortech.2016.09.055 DOI: https://doi.org/10.1016/j.biortech.2016.09.055

Qin, Z., Qin, Q., & Yang, Y. (2013). Continuous Biohydrogen Production with CSTR Reactor under High Organic Loading Rate Condition. In Advanced Materials Research (Vols. 864–867, pp. 225–228). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amr.864-867.225 DOI: https://doi.org/10.4028/www.scientific.net/AMR.864-867.225

Seengenyoung, J. , O-Thong, S. and Prasertsan, P. (2014) Comparison of ASBR and CSTR reactor for hydrogen production from palm oil mill effluent under thermophilic condition. Advances in Bioscience and Biotechnology, 5, 177-183. doi: 10.4236/abb.2014.53022. DOI: https://doi.org/10.4236/abb.2014.53022

Sekoai, P. T., Awosusi, A. A., Yoro, K. O., Singo, M., Oloye, O., Ayeni, A. O., … Daramola, M. O. (2017). Microbial cell immobilization in biohydrogen production: a short overview. Critical Reviews in Biotechnology, 38(2), 157–171. doi:10.1080/07388551.2017.1312274 DOI: https://doi.org/10.1080/07388551.2017.1312274

Seelert T, Ghosh D, Yargeau V. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol. 2015;99:4107–4116. DOI: https://doi.org/10.1007/s00253-015-6484-6

Jamali, N. S., Rashidi, N. F. D., Jahim, J. M., Thong, S. O.-, Jehlee, A., & Engliman, N. S. (2019). Thermophilic biohydrogen production from palm oil mill effluent: Effect of immobilized cells on granular activated carbon in fluidized bed reactor. Food and Bioproducts Processing. doi:10.1016/j.fbp.2019.07.012 DOI: https://doi.org/10.1016/j.fbp.2019.07.012

Venkata Mohan, S., Vijaya Bhaskar, Y., Sarma PN., (2007). Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res;41: 2652–64. DOI: https://doi.org/10.1016/j.watres.2007.02.015

Ginkel, v. S., Sung S, Lay JJ., 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol;35:4726–30. DOI: https://doi.org/10.1021/es001979r

Zagrodnik R, Laniecki M. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Bioresour Technol. 2015 Oct;194:187-95. doi: 10.1016/j.biortech.2015.07.028. Epub 2015 Jul 14. PMID: 26196419. DOI: https://doi.org/10.1016/j.biortech.2015.07.028

Tiago Borges Ferreira, Gabriel Catucci Rego, Lucas Rodrigues Ramos, Camila Aparecida de Menezes, Laís Am´erico Soares, Isabel Kimiko Sakamoto, Maria Bernadete Amˆancio Varesche, Edson Luiz Silva, HRT control as a strategy to enhance continuous hydrogen production from sugarcane juice under mesophilic and thermophilic conditions in AFBRs, Int. J. Hydrogen Energy 44 (36) (2019) 19719–19729, https://doi.org/10.1016/j.ijhydene.2019.06.050. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.050

Su, C., Liu, Y., Yang, X., & Li, H. (2020). Effect of hydraulic retention time on biohydrogen production from glucose in an internal circulation reactor. Energy & Fuels. doi:10.1021/acs.energyfuels.9b033 DOI: https://doi.org/10.1021/acs.energyfuels.9b03316

Kumar G, Sen B, Sivagurunathan P, Lin C-Y. (2016). High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system. Fuel;182:131e40 DOI: https://doi.org/10.1016/j.fuel.2016.05.088

Albert, J., Wölfel, R., Bösmann, A., Wasserscheid, P., 2012. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy & Environmental Science. 5 (7): 7956. DOI: https://doi.org/10.1039/c2ee21428h

Thauer, R.K., K. Jungermann & K. Decker 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41(1): 100-180 DOI: https://doi.org/10.1128/MMBR.41.1.100-180.1977

Sivagurunathan, P., Sen, B., Chiu-Yue, L., 2014. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. International Journal of Hydrogen Energy. 39: 19232-19241. DOI: https://doi.org/10.1016/j.ijhydene.2014.03.260

Suksong, W., P. Kongjan, P. Prasertsan, T. Imai & O. Sompong 2016. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource technology 214: 166-174. DOI: https://doi.org/10.1016/j.biortech.2016.04.077

Lutpi NA, Jahim JM, Mumtaz T, Abdul PM, Nor MTM. Physicochemical characteristics of attached biofilm on granular activated carbon for thermophilic biohydrogen production. RSC Adv 2015;5:19382e92. DOI: https://doi.org/10.1039/C4RA12730G

Chu C-Y, Wu S-Y, Shen Y-C. Biohydrogen production performance in a draft tube bioreactor with immobilized cell. Int J Hydrogen Energy 2012;37:15658e65. DOI: https://doi.org/10.1016/j.ijhydene.2012.03.031

Zhang S, Lee Y, Kim T-H, Hwang S-J. Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB). Bioresour Technol 2013;141:227e32. DOI: https://doi.org/10.1016/j.biortech.2012.12.056

Downloads

Published

2024-07-14

How to Cite

Engliman, N. S., Md Jahim, J., Abdul Aziz, A. H., Abdul, P. . M., Indera Luthfi, A. A., & Jamali, N. S. (2024). Biohydrogen Production in Semi-Continuous System Using Immobilized Cell Membrane. IIUM Engineering Journal, 25(2), 32–45. https://doi.org/10.31436/iiumej.v25i2.2957

Issue

Section

Chemical and Biotechnology Engineering

Funding data

Most read articles by the same author(s)