Effect of the lignocellulolytic substrates and fermentation process parameters on myco-coagulant production for water treatment
DOI:
https://doi.org/10.31436/iiumej.v24i1.2400Keywords:
Myco-coagulant, solid-state bioconversion, lignocellulolytic substrates, water treatment, turbidity removal, flocculation activityAbstract
In the present research, a fungal strain was used to produce a myco-coagulant via solid-state bioconversion to reduce water turbidity. The production of myco-coagulant was achieved using several low-cost lignocellulolytic substrates, namely coco peat, sawdust, palm kernel cake, and rice bran as sources of carbon and nitrogen. This research involves the study of both the effect of lignocellulolytic substrates and the parameters involved in the fermentation process for myco-coagulant production. Coco peat was chosen as a suitable lignocellulolytic substrate to serve as a carbon source for producing myco-coagulant, potentially reducing the turbidity by 84.6% from the kaolin suspension. Sawdust, palm kernel cake, and rice bran showed 33.06%, 30.18, and 21.18 %, respectively. Furthermore, a statistical approach to the Plackett-Burman design was conducted to evaluate the significant parameters that affect the production of myco-coagulant. Eleven fermentation process parameters were selected: concentration of coco peat (2- 4 %), incubation time (5-9 days), temperature (25-35 °C), pH (5-9), glucose (0-2 %), malt extract (1-2 %), yeast extract (0-2%), wheat flour (0-2 %), ammonium sulfate (0-1 %), inoculum size (1-3 %) and potassium dihydrogen phosphate (0-0.5 %). The selected variables were assessed through statistical analysis (main effects) based on their significance. Based on the main effect of each variable on flocculation activity, three variables, namely glucose, malt extract, and pH influenced high levels. On the other hand, the remaining eight variables did not significantly affect the production of myco-coagulant. Furthermore, a deeper study was conducted to further optimize the three effective variables involved in the fermentation process to evaluate these factors' influence on flocculation activity.
ABSTRAK: Penyelidikan ini adalah berkenaan strain fungus yang digunakan bagi menghasilkan miko-koagulan melalui penukaran-bio berkeadaan pepejal bagi mengurangkan kekeruhan air. Miko-koagulan dihasilkan dengan menggunakan beberapa substrat lignoselulolitik berkos rendah, iaitu habuk kelapa, habuk papan, hampas kelapa sawit, dan dedak padi sebagai sumber karbon dan nitrogen. Penyelidikan ini mengkaji kesan substrat lignoselulolitik dan faktor-faktor yang terlibat dalam proses fermentasi bagi menghasilkan miko-koagulan. Habuk kelapa dipilih sebagai substrat lignoselulolitik yang sesuai berfungsi sebagai sumber karbon dalam menghasilkan miko-koagulan, berpotensi mengurangkan kekeruhan sebanyak 84.6% daripada ampaian kaolin. Sebaliknya, habuk papan, hampas kelapa sawit, dan dedak padi menunjukkan 33.06%, 30.18, dan 21.18 %, masing-masing. Tambahan pula, pendekatan statistik ke atas reka bentuk Plackett-Burman telah dijalankan bagi menilai parameter penting yang mempengaruhi penghasilan miko-koagulan. Sebelas parameter proses penapaian telah dipilih: kepekatan habuk kelapa (2- 4 %), masa pengeraman (5-9 hari), suhu (25-35 C), pH (5-9), glukosa (0-2 %), ekstrak malt (1-2), tepung gandum (0-2 %), ammonium sulfat (0-1%), saiz inokulum (1-3 %) dan Kalium dihidrogen fosfat (0-0.5 %). Pemboleh ubah yang dipilih dinilai melalui analisis statistik berdasarkan kepentingannya. Berdasarkan kesan utama setiap pemboleh ubah terhadap aktiviti penggumpalan, tiga pemboleh ubah ini adalah glukosa, ekstrak malt, dan pH yang memberi kesan tertinggi. Sebaliknya, lapan pemboleh ubah lain tidak mempengaruhi penghasilan miko-koagulan dengan ketara. Tambahan lagi, kajian yang lebih mendalam telah dijalankan bagi membaiki tiga pemboleh ubah utama yang terlibat dalam proses fermentasi bagi menilai kesan yang mempengaruhi aktiviti penggumpalan.
Downloads
Metrics
References
Ebeling JM, Sibrell PL, Ogden SR, Summerfelt ST. (2003). Evaluation of chemical coagulation-flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacultural Engineering, 29(1-2): 23-42. DOI: https://doi.org/10.1016/S0144-8609(03)00029-3
Ang WL, Mohammad AW. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 262: 121267. DOI: https://doi.org/10.1016/j.jclepro.2020.121267
Aljuboori AHR, Idris A, Abdullah N, Mohamad R. (2013). Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresource Technology, 127: 489-493. DOI: https://doi.org/10.1016/j.biortech.2012.09.016
Bernard KNM, Sylvere NK, Patrice KG, Joseph KG. (2019). Coagulation and sedimentation of concentrated laterite suspensions: Comparison of hydrolyzing salts in presence of Grewia spp. biopolymer. Journal of Chemistry, 1-9. DOI: https://doi.org/10.1155/2019/1431694
Ramavandi B. (2014). Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resources and Industry, 6: 36-50. DOI: https://doi.org/10.1016/j.wri.2014.07.001
Moran S. (2018) An Applied Guide to Water and Effluent Treatment Plant Design. Butterworth-Heinemann. DOI: https://doi.org/10.1016/B978-0-12-811309-7.00028-X
Lapointe M, Barbeau B. (2020). Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review. Separation and Purification Technology, 231: 115893. DOI: https://doi.org/10.1016/j.seppur.2019.115893
Flaten TP. (2001). Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Research Bulletin, 55(2): 187-196 DOI: https://doi.org/10.1016/S0361-9230(01)00459-2
Ward RJ, McCrohan CR, White KN. (2006). Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquatic Toxicology, 77(2): 222-228. DOI: https://doi.org/10.1016/j.aquatox.2005.12.006
Mortula M, Bard SM, Walsh ME, Gagnon GA. (2009). Aluminum toxicity and ecological risk assessment of dried alum residual into surface water disposal. Canadian Journal of Civil Engineering, 36(1): 127-136. DOI: https://doi.org/10.1139/S08-042
Tomljenovic L. (2011). Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link? Journal of Alzheimer's Disease, 23(4): 567-598 DOI: https://doi.org/10.3233/JAD-2010-101494
Kluczka J, Zo?otajkin M, Ciba J, Staro? M. (2017). Assessment of aluminum bioavailability in alum sludge for agricultural utilization. Environmental Monitoring and Assessment, 189(8): 1-8. DOI: https://doi.org/10.1007/s10661-017-6133-x
Lee CS, Robinson J, Chong MF. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6): 489-508. DOI: https://doi.org/10.1016/j.psep.2014.04.010
Al-Mutairi NZ. (2006). Coagulant toxicity and effectiveness in a slaughterhouse wastewater treatment plant. Ecotoxicology and Environmental Safety, 65(1): 74-83. DOI: https://doi.org/10.1016/j.ecoenv.2005.05.013
Aljuboori AHR, Uemura Y, Osman NB, Yusup S. (2014). Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source. Bioresource Technology, 171: 66-70. DOI: https://doi.org/10.1016/j.biortech.2014.08.038
Zulkeflee Z, Sánchez A. (2014). Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system. Water Science and Technology, 70(6): 1032-1039. DOI: https://doi.org/10.2166/wst.2014.329
Hölker U, Lenz J. (2005). Solid-state fermentation—are there any biotechnological advantages? Current Opinion in Microbiology, 8(3): 301-306. DOI: https://doi.org/10.1016/j.mib.2005.04.006
Gutarra MLE, de Godoy MG, Silva JDN, Guedes IA, Lins U, Castilho LDR, Freire DMG. (2009). Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnology Journal: Healthcare Nutrition Technology, 4(10): 1450-1459. DOI: https://doi.org/10.1002/biot.200800298
Krishna C. (2005). Solid-state fermentation system – An overview. Critical Reviews in Biotechnology 25: 1-30. DOI: https://doi.org/10.1080/07388550590925383
Pandey A, Larroche C, Soccol CR. (2008). General considerations about solid-state fermentation processes. In Current Developments in Solid-state Fermentation, Springer, New York, NY. pp. 13-25. DOI: https://doi.org/10.1007/978-0-387-75213-6_2
Yingyi D, Lan W, Hongzhang C. (2012). Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochemical Engineering Journal, 67: 60-67. DOI: https://doi.org/10.1016/j.bej.2012.04.020
Krishna S. (2005). Quantum dots-in-a-well infrared photodetectors. Journal of Physics D: Applied Physics, 38(13): 2142. DOI: https://doi.org/10.1088/0022-3727/38/13/010
Karimi S, Mahboobi Soofiani N, Mahboubi A, Taherzadeh MJ. (2018). Use of organic wastes and industrial byproducts to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability, 10(9): 3296. DOI: https://doi.org/10.3390/su10093296
Ross, M. (2015). Mechanical properties of sheets comprised of mycelium: A paper engineering perspective. Honours Theses. Paper 68. University of North Carolina, The USA.
Luthfi WM, Alias H, Tay GS, Lee CK. (2020). Production and characterization of bioflocculant via solid state fermentation process using oil palm empty fruit bunch fibers as substrate. Biocatalysis and Agricultural Biotechnology, 23: 101454. DOI: https://doi.org/10.1016/j.bcab.2019.101454
Qi X, Zheng Y, Tang N, Zhou J, Sun S. (2020). Bioconversion of citrus peel wastes into bioflocculants and their application in the removal of microcystins. Science of the Total Environment, 715: 136885. DOI: https://doi.org/10.1016/j.scitotenv.2020.136885
Hamidah H. (2018). Study on myco-coagulant from Lentinus squarrosulus for water turbidity reduction. Master's thesis. Faculty of Engineering, International Islamic University Malaysia.
Liu W, Hao Y, Jiang J, Zhu A, Zhu J, Dong, Z. (2016). Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant. Bioresource Technology, 218: 318-325. DOI: https://doi.org/10.1016/j.biortech.2016.06.108
Pu S, Ma H, Deng D, Xue S, Zhu R, Zhou Y, Xiong X. (2018). Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PloS one, 13(1): e0190236. DOI: https://doi.org/10.1371/journal.pone.0190236
Nurul-Adela B, Nasrin AB, Loh SK. (2016). Palm oil mill effluent as a low-cost substrate for bioflocculant production by Bacillus marisflavi NA8. Bioresources and Bioprocessing, 3(1): 1-8. DOI: https://doi.org/10.1186/s40643-016-0096-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.