The Optimization of Growth Condition of the Bacteria Producing Cold-Active Proteolytic Enzyme from the Antarctic Region

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2447

Keywords:

cold-active protease, Antarctica, one factor at time, response surface method

Abstract

The growth conditions of bacteria producing cold-active protease isolated from an Antarctic sample were screened using one-factor-at-time (OFAT). Then, crude protease of the strain was extracted during the late logarithmic phase for enzymatic assay. A strain that showed the highest enzyme activity was selected for optimization via response surface method (RSM). The parameters studied were incubation temperature (4 – 36 °C), pH media (4 – 10) and NaCl concentration (0 – 8%). Based on the OFAT results, all eight strains showed the highest growth rate at 20 °C, pH 7 and 4% (w/v) NaCl. The assay showed that the crude enzyme extracted from strain SC8 exhibited significantly higher activity (0.20 U and 0.37 U) than the positive control (0.11 U and 0.31 U) at -20 °C and 20 °C. RSM suggested that the optimized setting for growth of SC8 were at 20.5 °C, pH 6.83 and 2.05% (w/v) of NaCl with the results of the bacterial growth rate value was 3.70 ± 0.06 x 106 cells/hr. Optimal growth conditions of SC8 from this study are useful for the large-scale production of cold-active protease in future.

ABSTRAK: Keadaan pertumbuhan bakteria yang menghasilkan enzim protease aktif sejuk daripada sampel Antartika disaring menggunakan satu faktor pada masa (OFAT). Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih untuk tujuan pengoptimuman melalui kaedah permukaan tindak balas (RSM). Parameter yang dikaji ialah suhu pengeraman (4 – 36 °C), pH media (4 – 10) dan kepekatan NaCl (0 – 8%). Berdasarkan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 °C, pH 7 dan 4% NaCl. Hasil ujian enzimatik menunjukkan bahawa enzim protease yang diekstrak daripada SC8 mempamerkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM mencadangkan tetapan optimum untuk pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan 2.05% NaCl dengan keputusan kadar pertumbuhan bakteria ialah 3.70 ± 0.06 x 106 sel/jam. Keadaan pertumbuhan optimum SC8 daripada kajian ini bermanfaat untuk menghasilkan produk protease aktif sejuk secara besar-besaran pada masa hadapan.

The growth conditions of bacteria producing cold-active protease isolated from an Antarctic sample were screened using one-factor-at-time (OFAT). Then, crude protease of the strain was extracted during the late logarithmic phase for enzymatic assay. A strain that showed the highest enzyme activity was selected for optimization via response surface method (RSM). The parameters studied were incubation temperature (4 – 36 °C), pH media (4 – 10) and NaCl concentration (0 – 8%). Based on the OFAT results, all eight strains showed the highest growth rate at 20 °C, pH 7 and 4% (w/v) NaCl. The assay showed that the crude enzyme extracted from strain SC8 exhibited significantly higher activity (0.20 U and 0.37 U) than the positive control (0.11 U and 0.31 U) at -20 °C and 20 °C. RSM suggested that the optimized setting for growth of SC8 were at 20.5 °C, pH 6.83 and 2.05% (w/v) of NaCl with the results of the bacterial growth rate value was 3.70 ± 0.06 x 106 cells/hr. Optimal growth conditions of SC8 from this study are useful for the large-scale production of cold-active protease in future.

ABSTRAK: Keadaan pertumbuhan bakteria yang menghasilkan enzim protease aktif sejuk daripada sampel Antartika disaring menggunakan satu faktor pada masa (OFAT). Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih untuk tujuan pengoptimuman melalui kaedah permukaan tindak balas (RSM). Parameter yang dikaji ialah suhu pengeraman (4 – 36 °C), pH media (4 – 10) dan kepekatan NaCl (0 – 8%). Berdasarkan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 °C, pH 7 dan 4% NaCl. Hasil ujian enzimatik menunjukkan bahawa enzim protease yang diekstrak daripada SC8 mempamerkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM mencadangkan tetapan optimum untuk pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan 2.05% NaCl dengan keputusan kadar pertumbuhan bakteria ialah 3.70 ± 0.06 x 106 sel/jam. Keadaan pertumbuhan optimum SC8 daripada kajian ini bermanfaat untuk menghasilkan produk protease aktif sejuk secara besar-besaran pada masa hadapan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Muhammad Asyraf Abd Latip, Mariculture Research Division

Mariculture Research Division, Fisheries Research Institute Langkawi, Kompleks Perikanan Bukit Malut, 07000 Langkawi, Kedah, Malaysia

Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur

Noor Faizul Hadry Nordin, International Institute for Halal Research and Training (INHART)

International Institute for Halal Research and Training (INHART), Block A, Level 3, KICT Building, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur

Siti Aisyah Alias, Institute of Ocean and Earth and Sciences

Institute of Ocean and Earth and Sciences, C308, Level 3, Block C, Institute for Advanced Studies Building, 50603 Kuala Lumpur, Malaysia

 

National Antarctic Research Centre, B303, Level 3, Block C, Institute for Advanced Studies Building, 50603 Kuala Lumpur, Malaysia

Jerzy Smykla, Institute of Nature Conservation, Polish Academy of Sciences

Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33 PL-31-120 Krakow, Poland

Faridah Yusof, International Islamic University Malaysia

Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur

Mohd Azrul Naim Mohamad, International Islamic University Malaysia

Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

References

Turner J, Anderson P, Lachlan-Cope T, Colwell S, Phillips T, Kirchgaessner A, et al. (2009) Record low surface air temperature at Vostok station, Antarctica. J Geophys Res Atmos., 114(24). https://doi.org/10.1029/2009JD012104 DOI: https://doi.org/10.1029/2009JD012104

Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballare CL, et al. (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci., 18(3): 681-716.

https://doi.org/10.1039/C8PP90061B DOI: https://doi.org/10.1039/c8pp90061b

Convey P, Peck LS. (2019) Antarctic environmental change and biological responses. Sci Adv., 5(11). https://doi.org/10.1126/sciadv.aaz0888 DOI: https://doi.org/10.1126/sciadv.aaz0888

Faucher B, Lacelle D, Davila A, Pollard W, Fisher D, McKay CP. (2017) Physicochemical and biological controls on carbon and nitrogen in permafrost from an ultraxerous environment, McMurdo Dry Valleys of Antarctica. J Geophys Res Biogeosciences, 122(10): 2593-2604. https://doi.org/10.1002/2017JG004006 DOI: https://doi.org/10.1002/2017JG004006

Pereira JL, Pereira P, Padeiro A, Gonçalves F, Amaro E, Leppe M, et al. (2017) Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making. Sci Total Environ., 574: 443-454. https://doi.org/10.1016/j.scitotenv.2016.09.091 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.091

Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, et al. (2017) Microbial diversity of browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Front Microbiol., 8(APR). https://doi.org/10.3389/fmicb.2017.00591 DOI: https://doi.org/10.3389/fmicb.2017.00591

Ji M, Van Dorst J, Bissett A, Brown M V., Palmer AS, Snape I, et al. (2016) Microbial diversity at Mitchell Peninsula, Eastern Antarctica: A potential biodiversity “hotspot.” Polar Biol., 39(2): 237-249. https://doi.org/10.1007/s00300-015-1776-y DOI: https://doi.org/10.1007/s00300-015-1776-y

Rong JC, Liu Y, Yu S, Xi L, Chi NY, Zhang QF. (2020) Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503T, a marine psychrophilic bacterium isolated from Antarctica. Mar Genomics, 49. https://doi.org/10.1016/j.margen.2019.05.005 DOI: https://doi.org/10.1016/j.margen.2019.05.005

Watanabe M, Kojima H, Fukui M. (2020) Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol., 113(3): 349-355.

https://doi.org/10.1007/s10482-019-01345-w DOI: https://doi.org/10.1007/s10482-019-01345-w

Pavlov MS, Lira F, Martinez JL, Olivares-Pacheco J, Marshall SH. (2020) Pseudomonas fildesensis sp. Nov., a psychrotolerant bacterium isolated from Antarctic soil of King George Island, South Shetland Islands. Int J Syst Evol Microbiol., 70(5): 3255-3263. https://doi.org/10.1099/ijsem.0.004165 DOI: https://doi.org/10.1099/ijsem.0.004165

Pereira JQ, Ambrosini A, Passaglia LMP, Brandelli A. (2017) A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: Insights about enzyme activity at low temperatures. Int J Biol Macromol., 103: 854-862. https://doi.org/10.1016/j.ijbiomac.2017.05.142 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.142

Vullo D, De Luca V, Del Prete S, Carginale V, Scozzafava A, Osman SM, et al. (2016) Sulfonamide inhibition studies of the ?-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic Med Chem Lett., 26(4): 1253-1259. https://doi.org/10.1016/j.bmcl.2015.06.079 DOI: https://doi.org/10.1016/j.bmcl.2016.01.023

Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. (2019) Heterologous expression and biochemical characterization of a novel cold-active ?-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif., 155: 78-85. https://doi.org/10.1016/j.pep.2018.11.009 DOI: https://doi.org/10.1016/j.pep.2018.11.009

Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. (2019) Microbial proteases applications. Front Bioeng Biotechnol., 7(JUN). https://doi.org/10.3389/fbioe.2019.00110 DOI: https://doi.org/10.3389/fbioe.2019.00110

Singh R, Mittal A, Kumar M, Mehta PK. (2016) Microbial proteases in commercial applications. J Pharm , Chem Biol Sci., 4: 365-374. http://www.jpcbs.info/2016_4_3_06_Rajendra.pdf

Dos Santos Aguilar JG, Sato HH. (2018) Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103: 253-262. https://doi.org/10.1016/j.foodres.2017.10.044 DOI: https://doi.org/10.1016/j.foodres.2017.10.044

Yu Y, Li HR, Zeng YX, Chen B. (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar Drugs, 9(2): 184-195. https://doi.org/10.3390/md9020184 DOI: https://doi.org/10.3390/md9020184

Box GEP, Wilson KB. (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B., 13(1):1-38. https://doi.org/10.1007/978-1-4612-4380-9_23 DOI: https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

Hamid NF, Said FM. (2018) Optimization of red pigment production by Monascus purpureus FTC 5356 using response surface methodology. IIUM Eng J., 19(1): 34-47. https://doi.org/10.31436/iiumej.v19i1.814 DOI: https://doi.org/10.31436/iiumej.v19i1.814

Latip MAA, Alias SA, Smykla J, Yusof F, Mohamad MAN, Nordin NFH. (2020) Discovery of cold-active protease from psychrophilic bacteria isolated from Antarctic region for bio-prospecting. Malays Appl Biol., 49: 55-60. https://doi.org/10.55230/mabjournal.v49i1.1654 DOI: https://doi.org/10.55230/mabjournal.v49i1.1654

Ram Y, Dellus-Gur E, Bibi M, Karkare K, Obolski U, Feldman MW, et al. (2019) Predicting microbial growth in a mixed culture from growth curve data. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1902217116 DOI: https://doi.org/10.1073/pnas.1902217116

García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. (2019) Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol., 103(13): 5243-5257. https://doi.org/10.1007/s00253-019-09844-6 DOI: https://doi.org/10.1007/s00253-019-09844-6

Jimat DN, Firdamohamed IB, Azmi AS, Amid A. (2020) Statistical analysis of growth conditions of newly isolate Bacillus sp. producing L-asparaginase. IIUM Eng J. https://doi.org/10.31436/iiumej.v21i2.1351 DOI: https://doi.org/10.31436/iiumej.v21i2.1351

Sandle T. (2019) Selection and application of culture media. Biocontamination Control Pharm Healthc., 103-123. http://dx.doi.org/10.1016/B978-0-12-814911-9.00007-9 DOI: https://doi.org/10.1016/B978-0-12-814911-9.00007-9

Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, et al. (2017) Biodiversity of the genus penicillium in different habitats. New Futur Dev Microb Biotechnol Bioeng Penicillium Syst Prop Appl., 3-18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6 DOI: https://doi.org/10.1016/B978-0-444-63501-3.00001-6

Cavicchioli R. (2016) On the concept of a psychrophile. ISME J., 10(4): 793-795. https://doi.org/10.1038%2Fismej.2015.160 DOI: https://doi.org/10.1038/ismej.2015.160

Ramle Z, Abdul Rahim R. (2016) Psychrophilic lipase from Arctic bacterium. Trop Life Sci Res., 27: 151-157. https://doi.org/10.21315%2Ftlsr2016.27.3.21 DOI: https://doi.org/10.21315/tlsr2016.27.3.21

Li D, Liu S. (2018) Water quality monitoring and management: Basis, technology and case studies. 1st ed. Water Quality Monitoring and Management: Basis, Technology and Case Studies. Acedamic Press. 1-368. https://doi.org/10.1016/C2016-0-00573-9 DOI: https://doi.org/10.1016/B978-0-12-811330-1.00001-6

Bowman JS, Deming JW. (2017) Wind-driven distribution of bacteria in coastal Antarctica: Evidence from the Ross Sea region. Polar Biol., 40(1): 25-35.

https://doi.org/10.1007/s00300-016-1921-2 DOI: https://doi.org/10.1007/s00300-016-1921-2

Smykla J, Drewnik M, Szarek-Gwiazda E, Hii YS, Knap W, Emslie SD. (2015) Variation in the characteristics and development of soils at Edmonson Point due to abiotic and biotic factors, northern Victoria Land, Antarctica. Catena., 132: 56-67. https://doi.org/10.1016/j.catena.2015.04.011 DOI: https://doi.org/10.1016/j.catena.2015.04.011

Lambrechts S, Willems A, Tahon G. (2019) Uncovering the uncultivated majority in Antarctic soils: Toward a synergistic approach. Front Microbiol., 10(FEB). https://doi.org/10.3389/fmicb.2019.00242 DOI: https://doi.org/10.3389/fmicb.2019.00242

Siddiqui KS. (2017) Defying the activity–stability trade-off in enzymes: Taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol., 37(3): 309-322. https://doi.org/10.3109/07388551.2016.1144045 DOI: https://doi.org/10.3109/07388551.2016.1144045

Åqvist J, Isaksen GV, Brandsdal BO. (2017) Computation of enzyme cold adaptation. Nat Rev Chem., 1. https://doi.org/10.1038/s41570-017-0051 DOI: https://doi.org/10.1038/s41570-017-0051

Panja AS, Maiti S, Bandyopadhyay B. (2020) Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci Rep., 10(1): 1822. https://doi.org/10.1038/s41598-020-58825-7 DOI: https://doi.org/10.1038/s41598-020-58825-7

Latip MAA, Hamid AAM, Nordin NFH. (2019) Microbial hydrolytic enzymes: In silico studies between polar and tropical regions. Polar Sci., 20. https://doi.org/10.1016/j.polar.2019.04.003 DOI: https://doi.org/10.1016/j.polar.2019.04.003

Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S. (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol., 39(2): 172-181. https://doi.org/10.1016/j.enzmictec.2006.03.032 DOI: https://doi.org/10.1016/j.enzmictec.2006.03.032

Wang QF, Miao JL, Hou YH, Ding Y, Wang GD, Li GY. (2005) Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol Lett., 27(16): 1195 -1198. https://doi.org/10.1007/s10529-005-0016-x DOI: https://doi.org/10.1007/s10529-005-0016-x

Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles., 7(6): 435-442. https://doi.org/10.1007/s00792-003-0340-9 DOI: https://doi.org/10.1007/s00792-003-0340-9

Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H. (2005) A cold-active extracellular metalloprotease from Pedobacter cryoconitis - Production and properties. Res Microbiol., 156(4): 499-505. https://doi.org/10.1016/j.resmic.2004.12.008 DOI: https://doi.org/10.1016/j.resmic.2004.12.008

Gao R, Zhou J, Leng W, Shi T, Jin W, Yuan L. (2020) Screening of a Planococcus bacterium producing a cold-adapted protease and its application in low-salt fish sauce fermentation. J Food Process Preserv., 44(8). https://doi.org/10.1111/jfpp.14625 DOI: https://doi.org/10.1111/jfpp.14625

Saba I, Qazi PH, Rather SA, Dar RA, Qadri QA, Ahmad N, et al. (2012) Purification and characterization of a cold active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World J Microbiol Biotechnol., 28(3): 1071-1079. https://doi.org/10.1007/s11274-011-0905-1 DOI: https://doi.org/10.1007/s11274-011-0905-1

Abou-Taleb KA, Galal GF. (2018) A comparative study between one-factor-at-a-time and minimum runs resolution-IV methods for enhancing the production of polysaccharide by Stenotrophomonas daejeonensis and Pseudomonas geniculate. Ann Agric Sci., 63(2): 173-180. https://doi.org/10.1016/j.aoas.2018.11.002 DOI: https://doi.org/10.1016/j.aoas.2018.11.002

Nor NM, Mohamed MS, Loh TC, Foo HL, Rahim RA, Tan JS, et al. (2017) Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol Biotechnol Equip., 31(5): 935-947. https://doi.org/10.1080/13102818.2017.1335177 DOI: https://doi.org/10.1080/13102818.2017.1335177

Czitrom V. (1999) One-factor-at-a-time versus designed experiments. Am Stat., 53(2): 126-131. https://doi.org/10.2307/2685731 DOI: https://doi.org/10.1080/00031305.1999.10474445

Biswas G, Kumari M, Adhikari K, Dutta S. (2017) Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Appl Water Sci., 7(8): 4673-4690. https://doi.org/10.1007/s13201-017-0630-5 DOI: https://doi.org/10.1007/s13201-017-0630-5

Ahmed SA, Abdella MAA, El-Sherbiny GM, Ibrahim AM, El-Shamy AR, Atalla SMM. (2019) Application of one –factor- at-a-time and statistical designs to enhance ?-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocatal Agric Biotechnol., 22. https://doi.org/10.1016/j.bcab.2019.101397 DOI: https://doi.org/10.1016/j.bcab.2019.101397

Subara D, Jaswir I, Alkhatib MFR, Noorbatcha IA. (2018) Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Adv Nat Sci Nanosci Nanotechnol., 9(4). https://doi.org/10.1088/2043-6254/aae988 DOI: https://doi.org/10.1088/2043-6254/aae988

Downloads

Published

2023-01-04

How to Cite

Abd Latip, M. A., Nordin, N. F. H., Alias, S. A., Smykla, J., Yusof, F., & Mohamad, M. A. N. (2023). The Optimization of Growth Condition of the Bacteria Producing Cold-Active Proteolytic Enzyme from the Antarctic Region. IIUM Engineering Journal, 24(1), 27–39. https://doi.org/10.31436/iiumej.v24i1.2447

Issue

Section

Chemical and Biotechnology Engineering

Funding data

Most read articles by the same author(s)