The Optimization of Growth Condition of the Bacteria Producing Cold-Active Proteolytic Enzyme from the Antarctic Region
DOI:
https://doi.org/10.31436/iiumej.v24i1.2447Keywords:
cold-active protease, Antarctica, one factor at time, response surface methodAbstract
The growth conditions of bacteria producing cold-active protease isolated from an Antarctic sample were screened using one-factor-at-time (OFAT). Then, crude protease of the strain was extracted during the late logarithmic phase for enzymatic assay. A strain that showed the highest enzyme activity was selected for optimization via response surface method (RSM). The parameters studied were incubation temperature (4 – 36 °C), pH media (4 – 10) and NaCl concentration (0 – 8%). Based on the OFAT results, all eight strains showed the highest growth rate at 20 °C, pH 7 and 4% (w/v) NaCl. The assay showed that the crude enzyme extracted from strain SC8 exhibited significantly higher activity (0.20 U and 0.37 U) than the positive control (0.11 U and 0.31 U) at -20 °C and 20 °C. RSM suggested that the optimized setting for growth of SC8 were at 20.5 °C, pH 6.83 and 2.05% (w/v) of NaCl with the results of the bacterial growth rate value was 3.70 ± 0.06 x 106 cells/hr. Optimal growth conditions of SC8 from this study are useful for the large-scale production of cold-active protease in future.
ABSTRAK: Keadaan pertumbuhan bakteria yang menghasilkan enzim protease aktif sejuk daripada sampel Antartika disaring menggunakan satu faktor pada masa (OFAT). Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih untuk tujuan pengoptimuman melalui kaedah permukaan tindak balas (RSM). Parameter yang dikaji ialah suhu pengeraman (4 – 36 °C), pH media (4 – 10) dan kepekatan NaCl (0 – 8%). Berdasarkan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 °C, pH 7 dan 4% NaCl. Hasil ujian enzimatik menunjukkan bahawa enzim protease yang diekstrak daripada SC8 mempamerkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM mencadangkan tetapan optimum untuk pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan 2.05% NaCl dengan keputusan kadar pertumbuhan bakteria ialah 3.70 ± 0.06 x 106 sel/jam. Keadaan pertumbuhan optimum SC8 daripada kajian ini bermanfaat untuk menghasilkan produk protease aktif sejuk secara besar-besaran pada masa hadapan.
The growth conditions of bacteria producing cold-active protease isolated from an Antarctic sample were screened using one-factor-at-time (OFAT). Then, crude protease of the strain was extracted during the late logarithmic phase for enzymatic assay. A strain that showed the highest enzyme activity was selected for optimization via response surface method (RSM). The parameters studied were incubation temperature (4 – 36 °C), pH media (4 – 10) and NaCl concentration (0 – 8%). Based on the OFAT results, all eight strains showed the highest growth rate at 20 °C, pH 7 and 4% (w/v) NaCl. The assay showed that the crude enzyme extracted from strain SC8 exhibited significantly higher activity (0.20 U and 0.37 U) than the positive control (0.11 U and 0.31 U) at -20 °C and 20 °C. RSM suggested that the optimized setting for growth of SC8 were at 20.5 °C, pH 6.83 and 2.05% (w/v) of NaCl with the results of the bacterial growth rate value was 3.70 ± 0.06 x 106 cells/hr. Optimal growth conditions of SC8 from this study are useful for the large-scale production of cold-active protease in future.
ABSTRAK: Keadaan pertumbuhan bakteria yang menghasilkan enzim protease aktif sejuk daripada sampel Antartika disaring menggunakan satu faktor pada masa (OFAT). Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih untuk tujuan pengoptimuman melalui kaedah permukaan tindak balas (RSM). Parameter yang dikaji ialah suhu pengeraman (4 – 36 °C), pH media (4 – 10) dan kepekatan NaCl (0 – 8%). Berdasarkan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 °C, pH 7 dan 4% NaCl. Hasil ujian enzimatik menunjukkan bahawa enzim protease yang diekstrak daripada SC8 mempamerkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM mencadangkan tetapan optimum untuk pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan 2.05% NaCl dengan keputusan kadar pertumbuhan bakteria ialah 3.70 ± 0.06 x 106 sel/jam. Keadaan pertumbuhan optimum SC8 daripada kajian ini bermanfaat untuk menghasilkan produk protease aktif sejuk secara besar-besaran pada masa hadapan.
Downloads
Metrics
References
Turner J, Anderson P, Lachlan-Cope T, Colwell S, Phillips T, Kirchgaessner A, et al. (2009) Record low surface air temperature at Vostok station, Antarctica. J Geophys Res Atmos., 114(24). https://doi.org/10.1029/2009JD012104 DOI: https://doi.org/10.1029/2009JD012104
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballare CL, et al. (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci., 18(3): 681-716.
https://doi.org/10.1039/C8PP90061B DOI: https://doi.org/10.1039/c8pp90061b
Convey P, Peck LS. (2019) Antarctic environmental change and biological responses. Sci Adv., 5(11). https://doi.org/10.1126/sciadv.aaz0888 DOI: https://doi.org/10.1126/sciadv.aaz0888
Faucher B, Lacelle D, Davila A, Pollard W, Fisher D, McKay CP. (2017) Physicochemical and biological controls on carbon and nitrogen in permafrost from an ultraxerous environment, McMurdo Dry Valleys of Antarctica. J Geophys Res Biogeosciences, 122(10): 2593-2604. https://doi.org/10.1002/2017JG004006 DOI: https://doi.org/10.1002/2017JG004006
Pereira JL, Pereira P, Padeiro A, Gonçalves F, Amaro E, Leppe M, et al. (2017) Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making. Sci Total Environ., 574: 443-454. https://doi.org/10.1016/j.scitotenv.2016.09.091 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.091
Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, et al. (2017) Microbial diversity of browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods. Front Microbiol., 8(APR). https://doi.org/10.3389/fmicb.2017.00591 DOI: https://doi.org/10.3389/fmicb.2017.00591
Ji M, Van Dorst J, Bissett A, Brown M V., Palmer AS, Snape I, et al. (2016) Microbial diversity at Mitchell Peninsula, Eastern Antarctica: A potential biodiversity “hotspot.” Polar Biol., 39(2): 237-249. https://doi.org/10.1007/s00300-015-1776-y DOI: https://doi.org/10.1007/s00300-015-1776-y
Rong JC, Liu Y, Yu S, Xi L, Chi NY, Zhang QF. (2020) Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503T, a marine psychrophilic bacterium isolated from Antarctica. Mar Genomics, 49. https://doi.org/10.1016/j.margen.2019.05.005 DOI: https://doi.org/10.1016/j.margen.2019.05.005
Watanabe M, Kojima H, Fukui M. (2020) Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol., 113(3): 349-355.
https://doi.org/10.1007/s10482-019-01345-w DOI: https://doi.org/10.1007/s10482-019-01345-w
Pavlov MS, Lira F, Martinez JL, Olivares-Pacheco J, Marshall SH. (2020) Pseudomonas fildesensis sp. Nov., a psychrotolerant bacterium isolated from Antarctic soil of King George Island, South Shetland Islands. Int J Syst Evol Microbiol., 70(5): 3255-3263. https://doi.org/10.1099/ijsem.0.004165 DOI: https://doi.org/10.1099/ijsem.0.004165
Pereira JQ, Ambrosini A, Passaglia LMP, Brandelli A. (2017) A new cold-adapted serine peptidase from Antarctic Lysobacter sp. A03: Insights about enzyme activity at low temperatures. Int J Biol Macromol., 103: 854-862. https://doi.org/10.1016/j.ijbiomac.2017.05.142 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.142
Vullo D, De Luca V, Del Prete S, Carginale V, Scozzafava A, Osman SM, et al. (2016) Sulfonamide inhibition studies of the ?-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic Med Chem Lett., 26(4): 1253-1259. https://doi.org/10.1016/j.bmcl.2015.06.079 DOI: https://doi.org/10.1016/j.bmcl.2016.01.023
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA. (2019) Heterologous expression and biochemical characterization of a novel cold-active ?-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif., 155: 78-85. https://doi.org/10.1016/j.pep.2018.11.009 DOI: https://doi.org/10.1016/j.pep.2018.11.009
Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. (2019) Microbial proteases applications. Front Bioeng Biotechnol., 7(JUN). https://doi.org/10.3389/fbioe.2019.00110 DOI: https://doi.org/10.3389/fbioe.2019.00110
Singh R, Mittal A, Kumar M, Mehta PK. (2016) Microbial proteases in commercial applications. J Pharm , Chem Biol Sci., 4: 365-374. http://www.jpcbs.info/2016_4_3_06_Rajendra.pdf
Dos Santos Aguilar JG, Sato HH. (2018) Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103: 253-262. https://doi.org/10.1016/j.foodres.2017.10.044 DOI: https://doi.org/10.1016/j.foodres.2017.10.044
Yu Y, Li HR, Zeng YX, Chen B. (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar Drugs, 9(2): 184-195. https://doi.org/10.3390/md9020184 DOI: https://doi.org/10.3390/md9020184
Box GEP, Wilson KB. (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B., 13(1):1-38. https://doi.org/10.1007/978-1-4612-4380-9_23 DOI: https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
Hamid NF, Said FM. (2018) Optimization of red pigment production by Monascus purpureus FTC 5356 using response surface methodology. IIUM Eng J., 19(1): 34-47. https://doi.org/10.31436/iiumej.v19i1.814 DOI: https://doi.org/10.31436/iiumej.v19i1.814
Latip MAA, Alias SA, Smykla J, Yusof F, Mohamad MAN, Nordin NFH. (2020) Discovery of cold-active protease from psychrophilic bacteria isolated from Antarctic region for bio-prospecting. Malays Appl Biol., 49: 55-60. https://doi.org/10.55230/mabjournal.v49i1.1654 DOI: https://doi.org/10.55230/mabjournal.v49i1.1654
Ram Y, Dellus-Gur E, Bibi M, Karkare K, Obolski U, Feldman MW, et al. (2019) Predicting microbial growth in a mixed culture from growth curve data. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1902217116 DOI: https://doi.org/10.1073/pnas.1902217116
García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. (2019) Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol., 103(13): 5243-5257. https://doi.org/10.1007/s00253-019-09844-6 DOI: https://doi.org/10.1007/s00253-019-09844-6
Jimat DN, Firdamohamed IB, Azmi AS, Amid A. (2020) Statistical analysis of growth conditions of newly isolate Bacillus sp. producing L-asparaginase. IIUM Eng J. https://doi.org/10.31436/iiumej.v21i2.1351 DOI: https://doi.org/10.31436/iiumej.v21i2.1351
Sandle T. (2019) Selection and application of culture media. Biocontamination Control Pharm Healthc., 103-123. http://dx.doi.org/10.1016/B978-0-12-814911-9.00007-9 DOI: https://doi.org/10.1016/B978-0-12-814911-9.00007-9
Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, et al. (2017) Biodiversity of the genus penicillium in different habitats. New Futur Dev Microb Biotechnol Bioeng Penicillium Syst Prop Appl., 3-18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6 DOI: https://doi.org/10.1016/B978-0-444-63501-3.00001-6
Cavicchioli R. (2016) On the concept of a psychrophile. ISME J., 10(4): 793-795. https://doi.org/10.1038%2Fismej.2015.160 DOI: https://doi.org/10.1038/ismej.2015.160
Ramle Z, Abdul Rahim R. (2016) Psychrophilic lipase from Arctic bacterium. Trop Life Sci Res., 27: 151-157. https://doi.org/10.21315%2Ftlsr2016.27.3.21 DOI: https://doi.org/10.21315/tlsr2016.27.3.21
Li D, Liu S. (2018) Water quality monitoring and management: Basis, technology and case studies. 1st ed. Water Quality Monitoring and Management: Basis, Technology and Case Studies. Acedamic Press. 1-368. https://doi.org/10.1016/C2016-0-00573-9 DOI: https://doi.org/10.1016/B978-0-12-811330-1.00001-6
Bowman JS, Deming JW. (2017) Wind-driven distribution of bacteria in coastal Antarctica: Evidence from the Ross Sea region. Polar Biol., 40(1): 25-35.
https://doi.org/10.1007/s00300-016-1921-2 DOI: https://doi.org/10.1007/s00300-016-1921-2
Smykla J, Drewnik M, Szarek-Gwiazda E, Hii YS, Knap W, Emslie SD. (2015) Variation in the characteristics and development of soils at Edmonson Point due to abiotic and biotic factors, northern Victoria Land, Antarctica. Catena., 132: 56-67. https://doi.org/10.1016/j.catena.2015.04.011 DOI: https://doi.org/10.1016/j.catena.2015.04.011
Lambrechts S, Willems A, Tahon G. (2019) Uncovering the uncultivated majority in Antarctic soils: Toward a synergistic approach. Front Microbiol., 10(FEB). https://doi.org/10.3389/fmicb.2019.00242 DOI: https://doi.org/10.3389/fmicb.2019.00242
Siddiqui KS. (2017) Defying the activity–stability trade-off in enzymes: Taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol., 37(3): 309-322. https://doi.org/10.3109/07388551.2016.1144045 DOI: https://doi.org/10.3109/07388551.2016.1144045
Åqvist J, Isaksen GV, Brandsdal BO. (2017) Computation of enzyme cold adaptation. Nat Rev Chem., 1. https://doi.org/10.1038/s41570-017-0051 DOI: https://doi.org/10.1038/s41570-017-0051
Panja AS, Maiti S, Bandyopadhyay B. (2020) Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci Rep., 10(1): 1822. https://doi.org/10.1038/s41598-020-58825-7 DOI: https://doi.org/10.1038/s41598-020-58825-7
Latip MAA, Hamid AAM, Nordin NFH. (2019) Microbial hydrolytic enzymes: In silico studies between polar and tropical regions. Polar Sci., 20. https://doi.org/10.1016/j.polar.2019.04.003 DOI: https://doi.org/10.1016/j.polar.2019.04.003
Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S. (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol., 39(2): 172-181. https://doi.org/10.1016/j.enzmictec.2006.03.032 DOI: https://doi.org/10.1016/j.enzmictec.2006.03.032
Wang QF, Miao JL, Hou YH, Ding Y, Wang GD, Li GY. (2005) Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol Lett., 27(16): 1195 -1198. https://doi.org/10.1007/s10529-005-0016-x DOI: https://doi.org/10.1007/s10529-005-0016-x
Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles., 7(6): 435-442. https://doi.org/10.1007/s00792-003-0340-9 DOI: https://doi.org/10.1007/s00792-003-0340-9
Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H. (2005) A cold-active extracellular metalloprotease from Pedobacter cryoconitis - Production and properties. Res Microbiol., 156(4): 499-505. https://doi.org/10.1016/j.resmic.2004.12.008 DOI: https://doi.org/10.1016/j.resmic.2004.12.008
Gao R, Zhou J, Leng W, Shi T, Jin W, Yuan L. (2020) Screening of a Planococcus bacterium producing a cold-adapted protease and its application in low-salt fish sauce fermentation. J Food Process Preserv., 44(8). https://doi.org/10.1111/jfpp.14625 DOI: https://doi.org/10.1111/jfpp.14625
Saba I, Qazi PH, Rather SA, Dar RA, Qadri QA, Ahmad N, et al. (2012) Purification and characterization of a cold active alkaline protease from Stenotrophomonas sp., isolated from Kashmir, India. World J Microbiol Biotechnol., 28(3): 1071-1079. https://doi.org/10.1007/s11274-011-0905-1 DOI: https://doi.org/10.1007/s11274-011-0905-1
Abou-Taleb KA, Galal GF. (2018) A comparative study between one-factor-at-a-time and minimum runs resolution-IV methods for enhancing the production of polysaccharide by Stenotrophomonas daejeonensis and Pseudomonas geniculate. Ann Agric Sci., 63(2): 173-180. https://doi.org/10.1016/j.aoas.2018.11.002 DOI: https://doi.org/10.1016/j.aoas.2018.11.002
Nor NM, Mohamed MS, Loh TC, Foo HL, Rahim RA, Tan JS, et al. (2017) Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol Biotechnol Equip., 31(5): 935-947. https://doi.org/10.1080/13102818.2017.1335177 DOI: https://doi.org/10.1080/13102818.2017.1335177
Czitrom V. (1999) One-factor-at-a-time versus designed experiments. Am Stat., 53(2): 126-131. https://doi.org/10.2307/2685731 DOI: https://doi.org/10.1080/00031305.1999.10474445
Biswas G, Kumari M, Adhikari K, Dutta S. (2017) Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Appl Water Sci., 7(8): 4673-4690. https://doi.org/10.1007/s13201-017-0630-5 DOI: https://doi.org/10.1007/s13201-017-0630-5
Ahmed SA, Abdella MAA, El-Sherbiny GM, Ibrahim AM, El-Shamy AR, Atalla SMM. (2019) Application of one –factor- at-a-time and statistical designs to enhance ?-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocatal Agric Biotechnol., 22. https://doi.org/10.1016/j.bcab.2019.101397 DOI: https://doi.org/10.1016/j.bcab.2019.101397
Subara D, Jaswir I, Alkhatib MFR, Noorbatcha IA. (2018) Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Adv Nat Sci Nanosci Nanotechnol., 9(4). https://doi.org/10.1088/2043-6254/aae988 DOI: https://doi.org/10.1088/2043-6254/aae988
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Yayasan Penyelidikan Antartika Sultan Mizan
Grant numbers YPASM Research Grant 2015 -
International Islamic University Malaysia
Grant numbers RIGS 16-332-0496 -
Narodowe Centrum Nauki
Grant numbers NN305376438