A New VLSI Architecture for High-Performance Parallel Turbo Decoder

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.2272

Keywords:

Turbo decoder, MAP decoder, VLSI, Interleaver, FPGA

Abstract

Recent wireless communications demand maximum achievable data rates without intervention. The channel decoder in the physical layer would support such high data rates with a flexible hardware structure. The turbo channel decoder offers flexible hardware architecture and reliable decoding, but the turbo decoder design is complex and its hardware architecture consumes more power and area in a communication system. Hence, an optimized high-performance turbo decoder architecture with simplified QPP interleaver is needed for supporting various data rates. In this context, this article presents a new hardware architecture with a three-stage pipeline parallel turbo decoding process and each MAP decoder in the proposed parallel turbo decoder with a three-stage micro pipeline processing is presented. The proposed structure optimized the circuit complexity and improved the throughput through parallel pipeline decoding.  Also, this article presents a simplified semi-recursive QPP interleaver, which avoids complex ‘mod‘ operations for a high-performance turbo decoder. The performance analysis has been done using Model sim, Xilinx Vivado design suite, and estimated performance analysis was observed on various 28 nm CMOS technology FPGAs and compared with the conventional designs. Analysis of the proposed design showed improvement in throughput up to 55.6% and a reduction in the power consumption up to 43% as compared to the recently reported architectures.

ABSTRAK: Komunikasi tanpa wayar terkini menuntut kadar data maksimum yang boleh dicapai tanpa intervensi. Penyahkod saluran dalam lapisan fizikal akan menyokong kadar data yang tinggi dengan struktur perkakasan fleksibel. Penyahkod saluran turbo menawarkan seni bina perkakasan fleksibel dan penyahkodan yang boleh dipercayai. Tetapi, penyahkod turbo merupakan blok yang kompleks, lebih berkuasa dan menggunakan kawasan yang luas dalam sistem komunikasi. Oleh itu, seni bina penyahkod turbo optimum berprestasi tinggi dengan antara lembar QPP yang mudah diperlukan bagi menyokong pelbagai kadar data. Dalam konteks ini, kajian ini merupakan seni bina perkakas baru dengan proses penyahkod turbo selari bersama salur paip tiga peringkat dan setiap penyahkod MAP yang dicadangkan dalam penyahkod turbo selari bersama proses saluran paip mikro tiga peringkat dibentangkan. Struktur yang dicadangkan dapat mengurangkan kerumitan litar dan meningkatkan daya pemprosesan melalui penyahkodan saluran paip selari. Selain itu, kajian ini merupakan antara lembar mudah QPP rekursif, yang dapat mengelakkan operasi 'mod' yang kompleks bagi penyahkod turbo berprestasi tinggi. Analisis prestasi telah dilakukan menggunakan sim Model, reka bentuk suit Xilinx Vivado, dan analisis prestasi anggaran telah diperhatikan pada pelbagai teknologi FPGA CMOS 28 nm dan dibandingkan dengan reka bentuk konvensional. Analisis reka bentuk yang dicadangkan menunjukkan peningkatan sepanjang 55.6% dan pengurangan penggunaan kuasa sehingga 43% berbanding seni bina laporan terkini.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Subhas Chennapalli

Professor, Department of Electronics and Communications, JNTU College of Engineering, Andhra Pradesh, India

Giriprasad Mahendra Nanjappa

Professor, Department of Electronics and Communications, JNTU College of Engineering, Andhra Pradesh, India

References

Coding and Decoding: Turbo-Codes. Proceedings of IEEE International Conference on Communication: pp 1064-1070. doi: 10.1109/ICC.1993.397441 DOI: https://doi.org/10.1109/ICC.1993.397441

Mackay DJC, Neal RM. (1996) Near Shannon limit performance of low density parity check codes. Electronics Letters, 32(18): 1645-1646. doi: 10.1049/el:19961141 DOI: https://doi.org/10.1049/el:19961141

Ar?kan E. (2009) Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7): 3051-3073. doi: 10.1109/TIT.2009.2021379 DOI: https://doi.org/10.1109/TIT.2009.2021379

Bahl L, Cocke J, Jelinek F, Raviv J. (1974) Optimal decoding of linear codes for minimizing symbol error rate (corresp.). IEEE Transactions on Information Theory, 20(2): 284-287. doi: 10.1109/TIT.1974.1055186 DOI: https://doi.org/10.1109/TIT.1974.1055186

Robertson P, Villebrun E, Hoeher P. (1995) A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. Proceedings of IEEE Intenational Conference on Communications: pp 1009-1013. doi: 10.1109/ICC.1995.524253 DOI: https://doi.org/10.1109/ICC.1995.524253

Parhi KK. (1999) VLSI Digital Signal Processing Systems: Design and Implementation. Hoboken, NJ: Wiley.

Nimbalker A, Blankenship TK, Classon B, Fuja TE, Costello DJ. (2008) Contention-free interleavers for High Throughput Turbo Decoding. IEEE Transactions on Communications, 56(8): 1258-1267. doi: 10.1109/TCOMM.2008.050502 DOI: https://doi.org/10.1109/TCOMM.2008.050502

Shrestha R, Paily R. (2014) High-Throughput Turbo Decoder with Parallel Architecture for LTE Wireless Communication Standards. IEEE Transactions on Circuits and Systems—I: Regular Papers, 61(9): 2699-2710. doi: 10.1109/TCSI.2014.2332266 DOI: https://doi.org/10.1109/TCSI.2014.2332266

Jing-shuin L, Ming-Der S, Chung-Yen L, Der-Wei Y. (2015) Efficient Highly Parallel Turbo Decoder for 3GPP LTE-Advanced. International Symposium on VLSI Design Automation and Test (VLSI-DAT): pp 1-4.

Li A, Xiang L, Chen T, Maunder RG, Al-Hashimi BM, Hanzo L. (2016) VLSI Implementation of Fully Parallel LTE Turbo Decoders. IEEE Access, 4: 323-346. doi: 10.1109/ACCESS.2016.2515719 DOI: https://doi.org/10.1109/ACCESS.2016.2515719

Shrestha R, Sharma A. (2018) VLSI-Architecture of Radix-2/4/8 SISO Decoder for Turbo Decoding at Multiple Data-rates. Proceedings of IFIP/IEEE International Conference on Very Large Sale Integration (VLSI-SoC): pp 131-136. doi: 10.1109/VLSI-SoC.2018.8644753 DOI: https://doi.org/10.1109/VLSI-SoC.2018.8644753

Luo H, Zhang Y, Li-ke H, Cosmas J. (2017) Low Latency Turbo Decoder implementation for Future Broad Casting Systems. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting: pp 1-4. doi: 10.1109/BMSB.2017.7986227 DOI: https://doi.org/10.1109/BMSB.2017.7986227

Shi Y, Zhan M, Zeng J. (2018) FPGA Implementation and Power estimation of a memory reduced LTE-Advanced Turbo decoder. Proceedings of IEEE Conference on IoT, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Block Chain, Computer and Information Technology: pp 607-611. doi:10.1109/Cybermatics_2018.2018.00124 DOI: https://doi.org/10.1109/Cybermatics_2018.2018.00124

Narayanan A, Murugan S, Bhakthavatchalu R. (2019) Low Latency Max Log MAP based Turbo Decoder. Proceedings of International Conference on Communication and Signal Processing (ICCSP): pp 721-724. doi: 10.1109/ICCSP.2019.8697955 DOI: https://doi.org/10.1109/ICCSP.2019.8697955

Sujatha E, Subhas C, Giriprasad MN. (2019) Performance improvement of Turbo decoder using VLSI optimization Techniques. IEEE International Conference on Vision, Towards Emerging Trends in Communication and Networking (ViTECoN): pp 84-90. doi: 10.1109/ViTECoN.2019.8899585 DOI: https://doi.org/10.1109/ViTECoN.2019.8899585

Zhan M, Pang Z, Yu K, Wen H. (2021) Reverse Calculation-Based Low Memory Turbo Decoder for Power Constrained Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(6): 2688-2701. doi: 10.1109/TCSI.2021.3068623 DOI: https://doi.org/10.1109/TCSI.2021.3068623

Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding. (2008) 3GPP Technical Specification Group Radio Access Network TS 36.212 Rev. 8.3.0 Release 9.

Hua L, Yue Z, Li-ke H, John C. (2017) Low Latency Turbo Decoder implementation for Future Broad Casting Systems. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Cagliari, Italy: pp 1-4.

Yan Z, He G, He W, Wang S, Mao Z. (2016) High Performance Parallel Turbo Decoder with Configurable Interleaving Network for LTE application: Integration. The VLSI Journal, 52: 77-90. https://doi.org/10.1016/j.vlsi.2015.05.003 DOI: https://doi.org/10.1016/j.vlsi.2015.05.003

Belov V, Mosin S. (2017) FPGA implementation of LTE turbo decoder using MAX-log MAP algorithm. Sixth Mediterranean Conference on Embedded Computing (MECO): pp 1-4. doi: 10.1109/MECO.2017.7977157 DOI: https://doi.org/10.1109/MECO.2017.7977157

Farzana S, Butt MFU, Agha S, Ng SX, Maunder RG. (2019) Performance Analysis of High Throughput MAP Decoder for Turbo Codes and Self Concatenated Convolutional Codes. IEEE Access, 7: 138079-138093. doi: 10.1109/ACCESS.2019.2942152 DOI: https://doi.org/10.1109/ACCESS.2019.2942152

Downloads

Published

2022-07-04

How to Cite

elukuru, sujatha, CHENNAPALLI, S., & MAHENDRA NANJAPPA, G. . (2022). A New VLSI Architecture for High-Performance Parallel Turbo Decoder. IIUM Engineering Journal, 23(2), 125–137. https://doi.org/10.31436/iiumej.v23i2.2272

Issue

Section

Electrical, Computer and Communications Engineering

Funding data