NUMERICAL MODELLING OF BIRD STRIKE ON A ROTATING ENGINE BLADES BASED ON VARIATIONS OF POROSITY DENSITY

Authors

  • Sharis-Shazzali Shahimi Structural Mechanics and Dynamics Research Group, Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Nur Azam Abdullah International Islamic University Malaysia
  • Ameen Topa Insitute of Transportation Infrastructure, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia
  • Meftah Hrairi Structural Mechanics and Dynamics Research Group, Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Ahmad Faris Ismail Structural Mechanics and Dynamics Research Group

DOI:

https://doi.org/10.31436/iiumej.v23i1.2146

Keywords:

Bird strike, Rotating engine blades, Porosity, SPH, Structural damage

Abstract

A numerical investigation is conducted on a rotating engine blade subjected to a bird strike impact. The bird strike is numerically modelled as a cylindrical gelatine with hemispherical ends to simulate impact on a rotating engine blade. Numerical modelling of a rotating engine blade has shown that bird strikes can severely damage an engine blade, especially as the engine blade rotates, as the rotation causes initial stresses on the root of the engine blade. This paper presents a numerical modelling of the engine blades subjected to bird strike with porosity implemented on the engine blades to investigate further damage assessment due to this porosity effect. As porosity influences the decibel levels on a propeller blade or engine blade, the damage due to bird strikes can investigate the compromise this effect has on the structural integrity of the engine blades. This paper utilizes a bird strike simulation through an LS-Dyna Pre-post software. The numerical constitutive relations are keyed into the keyword manager where the bird’s SPH density, a 10 ms simulation time, and bird velocity of 100 m/s are all set. The blade rotates counter-clockwise at 200 rad/s with a tetrahedron mesh. The porous regions or voids along the blade are featured as 5 mm diameter voids, each spaced 5 mm apart. The bird is modelled as an Elastic-Plastic-Hydrodynamic material model to analyze the bird’s fluid behavior through a polynomial equation of state. To simulate the fluid structure interaction, the blade is modelled with Johnson-Cook Material model parameters of aluminium where the damage of the impact can be observed. The observations presented are compared to previous study of a bird strike impact on non-porous engine blades.

ABSTRAK: Penyelidikan berangka telah dijalankan ke atas bilah enjin berputar tertakluk kepada impak pelanggaran burung. Pelanggaran burung tersebut telah dimodelkan secara berangka sebagai silinder gelatin dengan hujungnya berbentuk hemisfera demi mensimulasikan impaknya ke atas bilah enjin yang berputar. Pemodelan berangka bilah-bilah enjin yang berputar tersebut menunjukkan bahawa pelanggaran burung mampu menyebabkan kerosakan teruk terhadap bilah enjin terutamanya apabila bilah enjin sedang berputar oleh sebab putaran menghasilkan tekanan asal di pangkal bilah enjin. Kajian ini mengetengahkan pemodelan berangka ke atas bilah-bilah enjin tertakluk kepada pelanggaran burung terhadap bilah-bilah enjin yg mempunyai keliangan demi menyelidik dan menilai kerosakan kesan daripada keliangan tersebut. Keliangan juga mempengaruhi tahap-tahap desibel ke atas bilah kipas ataupun bilah enjin, kerosakan hasil serangan burung boleh menterjemah tahap ketahanan struktur integriti bagi bilah-bilah enjin tersebut. Penyelidikan ini mengguna pakai perisian “LS-Dyna Pre-post” untuk simulasi pelanggaran burung. Hubungan konstitutif berangka telah dimasukkan sebagai kata kunci di mana ketumpatan SPH burung, masa simulasi 10ms, dan halaju burung ditetapkan kepada 100 m/s. Bilah tersebut berputar pada 200 rad/s arah lawan jam dengan jejaring tetrahedron. Kawasan berliang atau kosong di sepanjang bilah ditetapkan diameternya kepada 5 mm, dan dijarakkan 5 mm di antara satu sama lain. Burung pula dimodelkan sebagai material “Elastic-Plastic-Hydrodynamic” untuk mengkaji sifat bendalir burung melalui persamaan polinomial. Demi mensimulasi interaksi struktur bendalir, bilah tersebut dimodelkan sebagai parameter aluminium material “Johnson Cook” di mana kerosakan daripada impak tersebut dapat diteliti. Penelitian-penelitian tersebut dibandingkan dengan kajian terdahulu ke atas serangan burung terhadap bilah-bilah enjin tidak berliang.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Ahmad Faris Ismail, Structural Mechanics and Dynamics Research Group

Deputy Rector (Academic & Internationalisation)

International Islamic University Malaysia

References

Thorpe J. (2012) 100 years of fatalities and destroyed civil aircraft due to bird strikes. 30th Meeting of the International Bird Strike Committee, 1-36.

Wilbeck JS, Rand JL. (1981) The development of a substitute bird model. J. Engineering for Gas Turbines and Power, 103(4):725-730. DOI: https://doi.org/10.1115/1.3230795

Liu J, Li Y, Gao X. (2014) Bird strike on a flat plate: Experiments and numerical simulations. Int. J. Impact Engineering, 70:21-37. DOI: https://doi.org/10.1016/j.ijimpeng.2014.03.006

Guan Y, Zhao Z, Chen W, Gao D. (2008) Foreign objecct damage to fan rotor blades of aeroengine part II: Numerical simulation of bird impact. Chinese J. Aeronautics, 21(4):328-334. DOI: https://doi.org/10.1016/S1000-9361(08)60043-6

Abdullah NA, Akbar M, Wirawan N, Curiel-Sosa JL. (2019) Structural integrity assessment on cracked composites interaction with aeroelastic constraint by means of XFEM. Composite Structures, 229. DOI: https://doi.org/10.1016/j.compstruct.2019.111414

Wirawan N, Abdullah NA, Akbar, Curiel-Sosa JL. (2018) Analysis on cracked commuter aircraft wing under dynamic cruise load by means of XFEM. J. Physics: Conference Series, 1106(1). DOI: https://doi.org/10.1088/1742-6596/1106/1/012014

Ahmad MIM, Curiel-Sosa JL, Akbar M, Abdullah NA. (2018) Numerical inspection based on quasi-static analysis using Rousselier damage model for aluminium wingbox aircraft structure. J. Physics: Conference Series, 1106(1). DOI: https://doi.org/10.1088/1742-6596/1106/1/012013

Shahimi SS, Abdullah NA, Hrairi M, Ahmad MIM. (2021) Numerical investigation on the damage of whirling engine blades subjected to bird strike impact. J Aeronautics, Astronautics and Aviation, 53(2):193-200.

Vignjevic R, Orlowski M, De Vuyst T, Campbell JC. (2013) A parametric study of bird strike on engine blades. Int. J. Impact Engineering, 60:44-57. DOI: https://doi.org/10.1016/j.ijimpeng.2013.04.003

Aldheeb M, Asrar W, Sulaeman E, Omar AA. (2018) Aerodynamics of porous airfoils and wings. Acta Mechanica, 229(9):3915-3933. DOI: https://doi.org/10.1007/s00707-018-2203-6

Kovalev IS. (2019) Buttefly acoustical skin – new method of reducing aero acoustical noise for a quiet propeller. J. Engineering Mechanics and Machinery, 4(1):1-28.

Dar UA, Awais M, Mian HH, Sheikh MZ. (2019) The effect of representative bird model and its impact direction on crashworthiness of aircraft windshield and canopy structure. Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Engineering, 233(14):5150-5163. DOI: https://doi.org/10.1177/0954410019837857

Riccio A, Cristiano R, Saputo S. (2016) A brief introduction to the bird strike numerical simulation. American J. Engineering and Applied Sciences, 9(4):946-950. DOI: https://doi.org/10.3844/ajeassp.2016.946.950

Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N. (2015) Determination of Johnson Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Materials Science and Engineering, 640:200-209. DOI: https://doi.org/10.1016/j.msea.2015.05.073

Downloads

Published

2022-01-04

How to Cite

Shahimi, S.-S., Abdullah, N. A., Topa, A. ., Hrairi, M., & Ismail, A. F. (2022). NUMERICAL MODELLING OF BIRD STRIKE ON A ROTATING ENGINE BLADES BASED ON VARIATIONS OF POROSITY DENSITY. IIUM Engineering Journal, 23(1), 412–423. https://doi.org/10.31436/iiumej.v23i1.2146

Issue

Section

Mechanical and Aerospace Engineering

Funding data