Potential of Low Carbon Nanotubes Dosage on Chromium Removal from Water

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.1717

Keywords:

STatGraphics; low CNT dosage; polluted water; Chromium

Abstract

This paper involves a method of eliminating hexavalent chromium (Cr (VI)) from the synthetic water via a low dosage of carbon nanotubes (CNT). The ability of CNT to remove Cr(VI) from synthetic water through the adsorption process was studied in batch experimentation. The findings revealed up to 100% elimination of Cr(VI) in the 0.07 mg/L Cr(VI) concentration. These excessive elimination proficiencies were credited to the powerful adsorption of chromium ions to the physical properties of the CNT. A pattern layout was created in these experimental runs in order to locate the ideal situation of the Cr(VI) deletion from synthetic water. To accomplish the purposes of the experiment, there were 4 independent variables influencing several points, namely the CNT dosage, the pH of the water, the agitation speed, and the contact time. The StatGraphics Centurion XV software has been used to create the adsorption equivalence and to discover the major impacts to the elimination of Cr(VI). The results show that the adsorption capability of the carbon nanotubes was considerably reliant on the pH of the Cr(VI) solution, supported by the CNT dosage, the contact time, and the agitation speed. The expected optimization, using the adsorption equation, shows that a 1 mg CNT dosage with a pH=2, 120 minutes contact time, and moderate agitation rate at 150 rpm is the most optimal.

ABSTRAK: Kajian ini melibatkan kaedah bagi menyingkirkan kromium (VI) dari air sintetik menggunakan karbon tiub nano berdos rendah. Eksperimen kelompok dilakukan bagi menentukan keupayaaan karbon tiub nano menyingkirkan Cr(VI) dari air sintetik melalui proses penjerapan. Dapatan kajian menunjukkan Cr(VI) telah disingkirkan sebanyak 100% dari kepekatan 0.07 mg/L Cr(VI). Kecekapan penyingkiran ini adalah disebabkan penjerapan ion-ion kromium yang kuat terhadap sifat fizikal nano tiub karbon tersebut. Rekabentuk eksperimen telah dibina bagi menentukan peringkat optima penyingkiran Cr(VI) dari air sintetik. Bagi mencapai matlamat kajian, empat faktor yang terdiri daripada dos nano tiub karbon, pH air, kelajuan goncangan dan masa sentuhan diukur. Perisian StatGraphics Centurion XV telah digunakan bagi mendapatkan nilai setara proses penjerapan dan kesan utama yang menyebabkan tersingkirnya Cr(VI). Dapatan kajian menunjukkan keupayaan penjerapan oleh nano tiub karbon sangat bergantung kepada pH larutan Cr(VI), disusuli dengan dos nano tiub karbon masa sentuhan dan kelajuan goncangan. Penjerapan optimum Cr(VI) dapat dicapai pada tahap 1 mg dos nano tiub karbon, larutan pada pH 2, masa sentuhan selama 120 minit dengan kelajuan goncangan sebanyak 150 rpm.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nassereldeen Ahmed Kabashi Abuelfutouh, International Islamic University Malaysia

Dr. Nassereldeen Ahmed kabbashi

Professor of Chemical & Biochemical Engineering

Department of Biotechnology Engineering

Faculty of Engineering

1.       Water and Wastewater Treatment and Management

2.       Solid Waste Management

3.       Environmental Engineering

4.      Bioethaonol and Biodiesel production and Management

5.       Expert Systems

6.       Environmental pollution

 

Firdaus Abd-Wahab, International Islamic University Malaysia

Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University. Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia

Warqaa Muhammed Bahaaddin, Duhok Polytechnic University

Dr Warqaa Muhammed Bahaadin is a staff at Duhok Polytechnic University, Department of Environmental Engineering

Lubna Muhamed Musa, University of Gezira

Department of horticultural sciences, Faculty of Agriculture, Gezira University, Sudan

Isam Yasseen Qudsieh, Jazan University

Chemical Engineering Department, College of Engineering, Jazan University, P.O.Box 706, Jazan 45142, Saudi Arabia

References

Iijima S. (1991) Helical microtubules of graphitic carbon. Nature, 354: 56-58. DOI: https://doi.org/10.1038/354056a0

Atieh MA, Bakather OY, Tawabini BS, Bukhari AA, Khaled M, Alharthi M, Fettouhi M, Abuilaiwi FA. (2010) Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes. J. Nanomater. https://doi.org/10.1155/2010/232378. DOI: https://doi.org/10.1155/2010/232378

El-Sheikh AH. (2008) Effect of oxidation of activated carbon on its enrichment efficiency of metal ions: Comparison with oxidized and non-oxidized multi-walled carbon nanotubes. Talanta, 75: 127-134. https://doi.org/10.1016/j.talanta.2007.10.039. DOI: https://doi.org/10.1016/j.talanta.2007.10.039

Mishra S, Bharagava RN. (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Heal. - Part C Environ. Carcinog. Ecotoxicol. Rev., 34: 1-32. https://doi.org/10.1080/10590501.2015.1096883. DOI: https://doi.org/10.1080/10590501.2015.1096883

Baig M, Mehmood B, Matin A. (2004) Removal of chromium from industrial effluents by sand filtration. Electron J Env. Agric Food Chem., 2.

Lee CK, Low KS, Kek KL. (1995) Removal of chromium from aqueous solution. Bioresour. Technol., 54: 183-189. https://doi.org/10.1016/0960-8524(95)00130-1. DOI: https://doi.org/10.1016/0960-8524(95)00130-1

Mitra S, Sarkar A, Sen. S (2017) Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnol. Environ. Eng., 2. https://doi.org/10.1007/s41204-017-0022-y. DOI: https://doi.org/10.1007/s41204-017-0022-y

Baral SS, Das SN, Rath P. (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem. Eng. J., 31: 216-222. https://doi.org/10.1016/j.bej.2006.08.003. DOI: https://doi.org/10.1016/j.bej.2006.08.003

Hummers WS, Offeman RE. (1958) Preparation of Graphitic Oxide. J. Am. Chem. Soc., 80: 1339. DOI: https://doi.org/10.1021/ja01539a017

Wang K, et al. (2015) One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes. Colloids Surfaces B Biointerfaces., 126: 273-279. https://doi.org/10.1016/j.colsurfb.2014.12.025. DOI: https://doi.org/10.1016/j.colsurfb.2014.12.025

Dakiky M, Khamis M, Manassra A, Mer’eb M. (2002) Selective adsorption of Cr(VI) in industrial adsorbents. Adv. Environ. Res., 6: 533-540. DOI: https://doi.org/10.1016/S1093-0191(01)00079-X

El-Shafey EI. (2005) Behaviour of reduction-sorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water. Air. Soil Pollut., 163: 81-102. https://doi.org/10.1007/s11270-005-8136-4. DOI: https://doi.org/10.1007/s11270-005-8136-4

William PJ. (1985) Industrial Wastewater Treatment Technology, 2nd Ed, Butterworth-Heinemann, London.

Demirbas E, Kobya M, Senturk E, Ozkan T. (2004) Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA, 30: 533-539. https://doi.org/10.4314/wsa.v30i4.5106. DOI: https://doi.org/10.4314/wsa.v30i4.5106

Nomanbhay SM, Palanisamy K. (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol., 8: 43-53. https://doi.org/10.2225/vol8-issue1-fulltext-7. DOI: https://doi.org/10.2225/vol8-issue1-fulltext-7

Eaton A, Ramirez LM, Haghani A. (2001) The Erin Brockovich Factor-Analysis of Total and Hexavalent Chromium in Drinking Waters, AWWA Water Qual. Technol. Conf. Nashville, TN.

Ahalya N, Kanamadi RD, Ramachandra TV. (2005) Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron. J. Biotechnol., 8: 258-264. https://doi.org/10.2225/vol8-issue3-fulltext-10. DOI: https://doi.org/10.2225/vol8-issue3-fulltext-10

Gupta VK, Shrivastava AK, Jain. N (2001) Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species. Water Res., 35: 4079-4085. https://doi.org/10.1016/S0043-1354(01)00138-5. DOI: https://doi.org/10.1016/S0043-1354(01)00138-5

S. Junyapoon, &S. Weerapong. (2006) Removal of hexavalent chromium from aqueous solutions by scrap iron filings. Kmitl Sci. Tech. J., 6: 1-12.

Ren B, Zhang Q, Zhang X, Zhao L, Li H. (2018) Biosorption of Cr(vi) from aqueous solution using dormant spores of Aspergillus niger. RSC Adv., 8: 38157-38165. https://doi.org/10.1039/c8ra07084a. DOI: https://doi.org/10.1039/C8RA07084A

Downloads

Published

2022-07-04

How to Cite

Abuelfutouh, N. A. K., ABD-WAHAB, F. ., Muhammed Bahaaddin, W. ., M. MUSA, L. ., NOUR HAMID, A., & Y. QUDSIEH, I. . (2022). Potential of Low Carbon Nanotubes Dosage on Chromium Removal from Water. IIUM Engineering Journal, 23(2), 10–19. https://doi.org/10.31436/iiumej.v23i2.1717

Issue

Section

Chemical and Biotechnology Engineering

Most read articles by the same author(s)