Keywords: Rainwater harvesting, Water quality analysis, Moringa oleifera, disinfectant


This study focuses on rainwater harvesting quality at the Faculty of Engineering, International Islamic University Malaysia (IIUM). As development is progressing over the years in Malaysia, there is also an increasing number of environmental issues and those issues are getting worse day by day. At present, Malaysia is blessed with plentiful annual rainfall that represents approximately 314 mm of monthly rainfall but there is no evidence that this rainwater is redirected for daily usage. To pursue a more sustainable development, rainwater harvesting has been recognized as one innovative solution. The IIUM Gombak campus is located in a hillside area that is a suitable study area to perform rainwater harvesting, which can be used as an alternative water supply in the future and reduce utility bills for water used on the campus. Firstly, a suitable study area for rain water harvesting around KOE, IIUM was determined before collection of data to determine the storage capacity needed. This study includes the estimation of rainwater quantity that can be harvested in one year. The quality of rainwater in terms of biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH, total suspended solid (TSS), turbidity, and microbial count were studied. Data analysis showed that the values of BOD, COD, pH, TSS, turbidity, and microbial count were in the range of 2 - 3.2 mg/l, 22.5 – 42.5 mg/l, 5.9 - 6.5, 20 mg/l, 9 -11 NTU, and between 200 -260 cfu/ml, respectively. This indicates that the harvested rainwater is acceptably clean but not suitable to be used as drinking water.

ABSTRAK: Fokus kajian ini adalah pada kualiti air hujan yang ditadah di Fakulti Kejuruteraan, Universiti Islam Antarabangsa Malaysia (UIAM). Sejajar dengan pembangunan pesat di Malaysia, isu alam sekitar juga semakin bertambah dan menjadi semakin teruk hari ke hari. Pada masa sama, ketika ini Malaysia dirahmati dengan hujan yang mencurah setiap tahun, dengan kuantiti bulanan sebanyak 314 mm air hujan dan tidak ada bukti penggunaan air hujan ini bagi kegunaan harian dsb. Bagi memenuhi keperluan kelangsungan pembangunan, penadahan air hujan dikenal pasti sebagai satu penyelesaian inovatif. Kampus UIAM Gombak terletak di kawasan pinggiran bukit yang sesuai bagi menjalankan kajian tadahan air hujan. Ianya boleh digunakan sebagai bekalan air alternatif pada masa depan dan mengurangkan bil utiliti bekalan air dalam kampus. Terlebih dahulu, kawasan kajian yang sesuai dikenal pasti berdekatan Fakulti Kejuruteraan, UIAM bagi mengumpul air hujan sebelum data dikumpulkan bagi mengenal pasti kapasiti pengumpulan yang diperlukan. Kajian ini juga menganggar kuantiti air hujan yang boleh ditadah dalam satu tahun. Kualiti air hujan dikaji dari segi keperluan oksigen biokimia (BOD), keperluan oksigen kimia (COD), pH, jumlah pepejal terampai (TSS), kekeruhan dan bilangan mikrob. Analisis data mendapati nilai BOD, COD, pH, TSS, kekeruhan dan bilangan mikrob berada dalam julat 2 - 3.2 mg/l, 22.5 – 42.5 mg/l, 5.9 - 6.5, 20 mg/l, 9 -11 NTU dan antara 200 -260 cfu/ml, masing-masing. Ini menunjukkan air hujan yang ditadah adalah boleh diterima sebagai bersih tetapi tidak sesuai dijadikan sebagai air minuman


Download data is not yet available.

Author Biography

Nassereldeen Ahmed Kabashi Abuelfutouh, BTE Dept KOE IIUM

Dr. Nassereldeen Ahmed kabbashi

Professor of Chemical & Biochemical Engineering

Department of Biotechnology Engineering

Faculty of Engineering

1.       Water and Wastewater Treatment and Management

2.       Solid Waste Management

3.       Environmental Engineering

4.      Bioethaonol and Biodiesel production and Management

5.       Expert Systems

6.       Environmental pollution



Ruhela, M., Bhutiani, R., & Anand, A. (2004) Rain water harvesting. Journal-Geological Society of India, 85(9): 1259-1261. Retrieved from http://www.currentscience.ac.in/cs/Downloads/article_id_085_09_1259_1261_0.pdf.

Wong, C. L., Venneker, R., Uhlenbrook, S., Jamil, a. B. M., & Zhou, Y. (2009) Variability of rainfall in Peninsular Malaysia. Hydrology and Earth System Sciences Discussions, 6(4): 5471–5503. https://doi.org/10.5194/hessd-6-5471-2009.

Prinz, D., & Singh, A. (2000) Technological potential for improvements of water harvesting. Gutachten Für Die World Commission on Dams, Retrieved from http://web.stanford.edu/~cbauburn/basecamp/dschool/homeproject/water_harvesting_improvements_technology.pdf.

Evans, C. A., Coombes, P. J., & Dunstan, R. H. (2006) Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater. Water Research, 40(1): 37–44. https://doi.org/10.1016/j.watres.2005.10.034.

Boers, T. M., & Ben-Asher, J. (1982) A review of rainwater harvesting. Agricultural Water Management, 5(2): 145–158. https://doi.org/10.1016/0378-3774(82)90003-8.

Despins, C., Farahbakhsh, K., & Leidl, C. (2009) Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology - AQUA, 58(2): 117–134. https://doi.org/10.2166/aqua.2009.013.

Bichi, M. H., Agunwamba, J. C., & Muyibi, S. A. (2012) Optimization of operating conditions for the application of Moringa oleifera (Zogale) seeds extract in water disinfection using response surface methodology, 11(92): 15875–15887. https://doi.org/10.5897/AJB12.1341.

Liaw, C. H., & Chiang, Y. C. (2014) Dimensionless analysis for designing domestic rainwater harvesting systems at the regional level in Northern Taiwan. Water (Switzerland), 6(12): 3913–3933. https://doi.org/10.3390/w6123913.

Sharma, A.K., Begbie, D. and Gardner, T. (2015) Rainwater Tank Systems for Urban Water Supply: Design, Yield, Energy, Health Risks, Economics and Social Perceptions. IWA Publishing, London.

Charters, F. J., Cochrane, T. A., & O’Sullivan, A. D. (2016) Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Science of the Total Environment, 550: 265–272. https://doi.org/10.1016/j.scitotenv.2016.01.093.

Fayez Abdulla & A.W. Al-Shareef. (2009) Roof Rainwater Harvesting Systems for Household Water Supply in Jordan. Desalination. 243(1-3):195-207. https://doi.org/10.1016/j.desal.2008.05.013

Herrmann T, Schmida U. (2000) Rainwater utilization in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4): 307-316.

Cook, S., Sharma, A. and Chong, M. (2013) Performance Analysis of a Communal Residential Rainwater System for Potable Supply: A Case Study in Brisbane, Australia. Water Resources Management, 27: 4865-487.

Ghisi E. (2006) Potential for potable water savings by using rainwater in the residential sector of Brazil. Building and Environment, 41(11): 1654-1666.

Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S. M., Toriman, M. E., & Mokhtar, M. (2011) Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173(1–4): 625–641.

Bichi, M. H., Agunwamba, J. C., & Muyibi, S. A. (2012) Optimization of operating conditions for the application of Moringa oleifera (Zogale ) seeds extract in water disinfection using response surface methodology, 11(92): 15875–15887. https://doi.org/10.5897/AJB12.1341.

Suarez M, Entenza J, Doerries C, Meyer E, Bourquin L, Sutherland J, Marison I, Moreillon P, Mermod N (2003) Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. Biotech Bioeng 81(15):13–20. Retrieved from https://www.researchgate.net/publication/237077424_Genetic_diversity_and_population_structure_of_Moringa_oleifera

How to Cite
Abuelfutouh, N. A. K., Jamie, M., Nour, A., & Fuad, N. I. (2020). RAINWATER HARVESTING QUALITY ASSESSMENT AND EVALUATION: IIUM CASE STUDY. IIUM Engineering Journal, 21(1), 12 - 22. https://doi.org/10.31436/iiumej.v21i1.1139
Civil and Environmental Engineering