• Houda Salmi National higher school of mechanics, ENSEM, Laboratory of Control and Mechanical Characterization of Materials and Structures, Casablanca, Morocco
  • Abdelilah Hachim
  • Hanan El Bhilat
  • Khalid El Had



pipe with double slope thickness transition, xfem


This work analyses the effect of elliptical cracks on a pipe with double slope thickness transition, using the extended finite element method (XFEM), level sets were defined to describe the three-dimensional (3D) cracks. The Computation of the stress intensity factors (SIFs) of cracks is performed. The values of SIFs are compared between straight pipes and pipes with a double (single) slope thickness transition. The results show that the XFEM is an effective tool for modelling cracks in pipes. A pressurized pipe with double slope thickness transition is more sensitive to the defect in comparison with another type of pipe. Parameters of the transition zone have an effect on stress intensity factors, precisely, the parameters of the first thickness transition are more influential on the gravity of the defect compared to the second thickness transition.

ABSTRAK: Kajian ini menganalisa kesan retakan elips pada paip dengan peralihan ketebalan cerun berganda, menggunakan kaedah elemen terhingga dipanjangkan (XFEM), set tahap ditentukan bagi menentukan keretakan tiga dimensi (3D). Pengiraan faktor intensiti tekanan (SIF) retakan dilakukan. Nilai SIF dibandingkan antara paip lurus dan paip peralihan ketebalan cerun berganda (tunggal). Hasil kajian menunjukkan bahawa XFEM adalah alat yang berkesan bagi memodel keretakan paip. Paip bertekanan mengikut peralihan ketebalan cerun berganda, lebih sensitif terhadap kecacatan berbanding paip lain. Parameter zon peralihan mempunyai pengaruh terhadap faktor intensiti tegangan, tepatnya, parameter peralihan ketebalan pertama lebih mempengaruhi pada graviti kecacatan berbanding dengan peralihan ketebalan kedua.


Download data is not yet available.


Metrics Loading ...


Rahman S, Ghadiali N, Wilcowski GM, Moberg F, Brickstad B. (1998) Crack-opening-area analysis for circumferential trough-wall cracks restrain of bending thickness transition and weld residual stresses. Int J Pres Ves Pip, 75(6):397-415.

Hanan El Bhilat, Khalid El Had, Houda Salmi, Abdelilah Hachim. (In press). Thermo-mechanical characterization of post-consumer recycled high impact polystyrene from disposable cups: influence of the number of processing cycles. Journal of Computational & Applied Research in Mechanical Engineering (JCARME). DOI 10.22061/JCARME.2019.5187.1643

Abdelkader Saffih, Hariri S. (2006) Numerical study of elliptical cracks in cylinders with a thickness transition’ International Journal of Pressure Vessels and Piping; 83(1):35-41.

DOI: 10.1016/j.ijpvp.2005.10.002

Abdelkader Saffih, Hariri S. (2006) Comparison of semi-elliptical cracks in cylinders with a thickness transition and in a straight cylinder – Elastic-plastic behavior, Engineering Fracture Mechanics, 73(4):2685-2697

Hariri S, El Hakimi A, Azari Z. (2008) Etude numérique et expérimentale de la nocivité des défauts dans des coques cylindriques et sphériques: aide à la détermination des facteurs de contraintes, Revue de Mécanique Appliquée et Théorique, 1(10):791-804.

CEA; The French Alternative Energies and Atomic Energy Commission (CEA). ‘Commissariat à L’Energie Atomique (France)’


Chapuliot S, Lacire MH. (1999) Stress intensity factors for external circumferential cracks in tubes over a wide range of radius over thickness ratios. American Society of Mechanical Engineers, Pressure Vessels and Piping Division, 50(2):395-106.

Moës N, Gravouil A. Belytschko T. (2002) Non-planar 3D crack growth by the extended finite element and level sets; Part I: Mechanical model. International Journal for Numerical Methods in Engineering, 53(11):2549-2568.

Salmi H, El Had K, El Bhilat H, Hachim A. (2020) Numerical Study of SIF for a Crack in P265GH Steel by XFEM. In: Dos Santos S., Maslouhi M., Okoudjou K. (eds) Recent Advances in Mathematics and Technology. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham.

Belytschko T, Black T. (1999). Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng, 45(5):601–62.

Stolarska M, Chopp D, Moes N, Belytschko T. (2001) Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng, 51(1):943–960.

Seyed Javid Zakavi, Behzad Shiralivand, Mohammad Nourbakhsh. (2017) Evaluation of combined hardening model in ratcheting behavior of pressurized piping elbows subjected to in-plane moments. Journal of Computational & Applied Research in Mechanical Engineering (JCARME); 7(1): 57-71. DOI 10.22061/JCARME.2019.5187.1643

Kamal Sharma IVS, Mishra BK, Bhasin V. (2014) Numerical Modeling of Part-Through Cracks in Pipe and Pipe Bend using XFEM, Procedia Materials Science, 6(2):72-79.

Rice JR. (1968) A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35(1):379-386.

Sukumar N, Chopp DL, Moran B. (2003), Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Engineering Fracture Mechanics, 70(1): 29-48.

Eshelby JD. (1956) The Continuum Theory of Lattice Defects, Solid State Physics, 3(2):79-144.

CODAP (2005); French construction code. Construction des Appareils à Pression non soumis à l’action de la flamme, ‘the Code for Construction of unfired Pressure Vessels, Division 1, part C – design and calculation, section C2 – rules for calculating cylindrical, spherical and conical shell subjected to internal pressure.

Houda Salmi, Khalid El Had, Hanan El Bhilat, Abdelilah Hachim. (2019). Numerical Analysis of the Effect of External Circumferential Elliptical Cracks in Transition Thickness Zone of Pressurized Pipes Using XFEM. J. Appl. Comput. Mech., 5(5):861-874.

DOI: 10.22055/JACM.2019.28043.1452.

Houda Salmi ; Khalid El Had; Hanan El Bhilat; Abdelilah Hachim (In press). Numerical modeling and comparison study of elliptical cracks effect on the pipes straight and with thickness transition exposed to internal pressure, using XFEM in elastic behavior. Journal of Computational and Applied Research in Mechanical Engineering. DOI: 10.22061/JCARME.2019.3597.1448.




How to Cite

Salmi, H., Hachim, A., El Bhilat, H., & El Had, K. (2020). CRACK INFLUENCE ON A PIPE WITH DOUBLE SLOPE UNDER INTERNAL PRESSURE: NUMERICAL SIMULATION WITH XFEM. IIUM Engineering Journal, 21(2), 266–283.



Mechanical and Aerospace Engineering