MODIFIED CAPACITOR ASSISTED EXTENDED BOOST QUASI Z-SOURCE INVERTER FOR THE GRID-CONNECTED PV SYSTEM

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i1.1042

Keywords:

MCAEB q-ZSI; shoot-through; boost factor; MPPT; synchronization

Abstract

A grid-tied, single stage, three phase, PV system provides higher efficiency than a two-stage PV system. This paper presents a three-phase, single stage, grid-connected PV system with MPPT and reactive power injection capability into the grid using modified capacitor assisted extended boost quasi Z-source inverter (MCAEB q-ZSI) as the grid-tied PV inverter. The adaptability of the inverter for irradiance changes and the boost factor control with its shoot-through duty ratio adjustment made it highly recommended for the grid system. The shoot-through control technique like maximum constant boost control with a third harmonic injection enhances the performance of the inverter by reducing the low order ripples and voltage stress. The fuzzy voltage controller is proposed with the capacitor linearization algorithm to regulate the DC-link voltage. The current approach uses a fuzzy controller to control the real and the reactive power injection into the grid. The performance evaluation of the fuzzy and PI grid controller is carried out for the constant irradiance condition and from the investigation, parameters like boost factor (B), the shoot-through duty ratio(Ds), real power (P), reactive power (Q),  power factor and harmonics in the current injection are determined. A laboratory setup of the PV powered grid system is implemented, tested and validated with the simulation results.

ABSTRAK: Dalam sistem fotovoltaik (PV) yang bersambung dengan satu peringkat, satu sistem elektronik kuasa yang mempunyai keuntungan dan kecekapan yang tinggi diperlukan untuk menginterupasi dengan utiliti tersebut. Dalam makalah ini, kapasitor yang diubah suai dibantu oleh pemacu kuadratik Z-source yang dilanjutkan (MCAEB q-ZSI) bertindak sebagai unit interfacing antara PV dan grid. Penyesuaian penyongsang untuk perubahan sinaran dan kawalan faktor rangsangan dengan pelarasan nisbah tugas menembak membuatnya sangat disyorkan untuk sistem grid. Teknik kawalan menembak seperti kawalan rangsangan berterusan maksimum dengan suntikan harmonik ketiga meningkatkan prestasi penyongsang dengan mengurangkan aruhan pesanan rendah dan tekanan voltan. Pendekatan semasa menggunakan pengawal kabur untuk mengawal suntikan kuasa sebenar dan reaktif ke grid. Penilaian prestasi pengawal grid fuzzy dan PI dilakukan untuk keadaan iradiasi malar dan dari penyiasatan, parameter seperti faktor rangsangan (B), nisbah tugas menembak (Ds), kuasa nyata (P), kuasa reaktif Q), faktor kuasa dan harmonik dalam suntikan semasa ditentukan.   

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Mastromauro RA, Liserre M, Dell'Aquila A. (2012). Control issues in single-stage photovoltaic systems: MPPT current and voltage control. IEEE Transactions on Industrial Informatics, 8(2):241-254.

Li Y, Jiang S, Cintron-Rivera JG, Peng FZ. (2013). Modeling and control of quasi-z-source inverter for distributed generation applications. IEEE Transactions on Industrial Electronics, 60(4):1532-1541.

Chen L, Amirahmadi A, Zhang Q, Kutkut N, Batarseh I. (2014). Design and Implementation of Three-Phase Two-Stage Grid-Connected Module Integrated Converter. IEEE Transactions on Power Electronics, 29(8) : 3881-3892.

Sher HA, Rizvi A, Addoweesh KE, Al-Haddad K. (2017). A Single-Stage Stand-Alone Photovoltaic Energy System With High Tracking Efficiency. IEEE Transactions on Sustainable Energy, 8(2):755-762.

Peng Shuangjian, An Luo, Yandong Chen, Zhipeng LV. (2011). Dual-Loop Power Control for Single-Phase Grid-Connected Converters with LCL Filter. Journal of Power Electronics, 11(4): 456-463.

Gajanayake CJ, Luo FL, Gooi HB, So PL, Siow LK. (2010). Extended-Boost Z-Source Inverters. IEEE Transactions on Power Electronics, 25(10): 2642-2652.

Adamowicz M, Strzelecki R, Vinnikov D. (2010). Cascaded Quasi–Z–Source Inverters for Renewable Energy Generation Systems. Proceedings of Ecologic Vehicles and Renewable Energies Conference (EVER’10): 1-8.

Vinnikov D, Roasto I, Jalakas T, Strezelecki R, Adamowicz, MS. (2012). Analytical comparison of capacitor assisted and diode assisted cascaded quasi Z-source inverters. Przegląd Elektrotechniczny,112(8):1392-1215.

Miaosen Shen, Jin Wang, Joseph A, Fang Zheng Peng, Tolbert LM, Adams DJ. (2006). Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Transactions on Industry Applications, 42(3):770-778.

Thangaprakash S, Krishnan A. (2010). Implementation and Critical Investigation on Modulation Schemes of Three Phase Impedance Source Inverter. Iranian Journal of Electrical & Electronic Engineering, 6(2):157-162.

Zong X, Gray PA, Lehn PW. (2016). New Metric Recommended for IEEE Standard 1547 to Limit Harmonics Injected Into Distorted Grids. IEEE Transactions on Power Delivery, 31(3):963-972.

Lal VN, Singh SN. (2017). Control and Performance Analysis of a Single-Stage Utility-Scale Grid-Connected PV System. IEEE Systems Journal, 11(3): 1601-1611.

Reddy D, Ramasamy S. (2017).A fuzzy logic MPPT controller based three phase grid-tied solar PV system with improved CPI voltage. Proceeding in Innovations in Power and Advanced Computing Technologies (i-PACT): 1-6.

Ellabban O, Van Mierlo J, Lataire A. (2012). A DSP-Based Dual-Loop Peak DC-link Voltage Control Strategy of the Z-Source Inverter. IEEE Transactions on Power Electronics, 27(9):4088-4097.

Vinnikov D, Roasto I, Jalakas T, Ott S.( 2011). Extended Boost Quasi-Z-Source Inverters: Possibilities and Challenges. Electronics And Electrical Engineering, 112: 1392-1215. DOI: https://doi.org/10.5755/j01.eee.112.6.444

Rostami H, Khaburi DA. (2009). Voltage gain comparison of different control methods of the Z-source inverter. International of Electrical and Electronics Engineering:268-272.

Delfino F, Denegri GB, Invernizzi M, Procopio R.(2010). A control algorithm for the maximum power point tracking and the reactive power injection from grid-connected PV systems. IEEE Power and Energy Society General Meeting. DOI: https://doi.org/10.1109/PES.2010.5590213

Jain S, Agarwal V. (2007). Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electric Power Application, 1(55): 753-762.

Carli G, Singh A, Azeez NA, Williamson SS. (2018). Modelling, Design, Control, and Implementation of a Modified Z-Source Integrated PV/Grid/EV DC Charger/Inverter. IEEE Transactions on Industrial Electronics, 65(6): 5213-5220.

Altin N, Ozdemir S. (2013). Three-phase three-level grid interactive inverter with fuzzy logic based maximum power point tracking controller. Journal of Energy Conversion and Management, 69(6): 17-26.

Downloads

Published

2019-06-01

How to Cite

Hemalatha, N., & Ramalingam, S. . (2019). MODIFIED CAPACITOR ASSISTED EXTENDED BOOST QUASI Z-SOURCE INVERTER FOR THE GRID-CONNECTED PV SYSTEM. IIUM Engineering Journal, 20(1), 140–157. https://doi.org/10.31436/iiumej.v20i1.1042

Issue

Section

Electrical, Computer and Communications Engineering