EFFECT OF ALKALINE TREATMENT ON PROPERTIES OF RATTAN WASTE AND FABRICATED BINDERLESS PARTICLEBOARD

Authors

  • Zuraida Ahmad Department of Manufacturing and Materials, International Islamic University Malaysia
  • Maisarah Tajuddin Department of Manufacturing and Materials, International Islamic University Malaysia
  • Nurul Farhana Fatin Salim Department of Manufacturing and Materials, International Islamic University Malaysia
  • Zahurin Halim Department of Manufacturing and Materials, International Islamic University Malaysia

DOI:

https://doi.org/10.31436/iiumej.v19i1.879

Abstract

Binderless particleboard (BPB) has become an alternative to avoiding the usage of synthetic resin, possessing excellent properties but having low dimensional stability characteristics. Hence, this study aims to investigate the effects of alkaline treatment on properties of rattan furniture waste (RFW) and fabricated BPB. The RFW was fully immersed in a 1% sodium hydroxide (NaOH) solution for 10 minutes and dried in an oven at 35°C for two days. Then, the treated RFW was used to fabricate the BPB via a hot-pressing process at pressing parameters of 180°C and 5 minutes. The colour of the RFW changed to dark yellowish and chemical analysis showed some reduction in hemicellulose, lignin and ash content after the alkaline treatment, which have been confirmed through peak decline in Fourier Transform Infrared Spectroscopy (FTIR). Only cellulose content increased after treatment due to a disruption of hydrogen bonding on the fibre surface. The treated BPB panels had improved mechanical and dimensional stability compared to untreated BPB panels, and achieved the minimum requirement of board standards. Removal of the fibres’ impurities, led to tremendous physical consolidation among fibres. The nature of the panels changed from hydrophilic to hydrophobic as water molecules were released from the fibres during the treatment process. These results were supported by Scanning Electron Microscopy (SEM) analysis that displayed cleaner RFW fibres and rougher surfaces on the treated BPB panels.

ABSTRAK: Papan partikel tanpa pelekat (papan BPB) menjadi salah satu alternatif bagi menggelak penggunaan pelekat sintetik, ianya mempunyai sifat-sifat terbaik walaupun keseimbangan dimensi papan masih berada pada tahap rendah. Oleh itu, tujuan kajian ini dijalankan adalah bagi menyelidik kesan rawatan alkali ke atas sifat sisa perabot rotan dan  papan BPB yang dihasilkan. Sisa perabot rotan direndam penuh ke dalam cecair alkali Natrium Hidroksida (NaOH) berkepekatan 1%, selama 10 minit dan sesudah itu dikeringkan di dalam ketuhar pada suhu 35°C selama dua hari. Kemudian, sisa perabot rotan yang telah dirawat ini digunakan bagi menghasilkan papan BPB melalui kaedah tekanan haba pada suhu tekanan 180°C selama 5 minit. Warna sisa perabot rotan telah berubah kepada kuning gelap, dan hasil analisa kimia menunjukkan pengurangan pada hemi-selulosa, lignin dan komposisi abu dalam serat rotan selepas rawatan alkali dan terbukti melalui pengurangan nilai puncak pada analisa Fourier Transform Infrared Spectroscopy (FTIR). Hanya kandungan selulosa meningkat selepas rawatan alkali, disebabkan gangguan pada ikatan hidrogen pada permukaan serat. Papan BPB yang terhasil menggunakan serat dirawat telah menunjukkan peningkatan pada sifat mekanikal dan keseimbangan dimensi papan, serta mencapai piawaian minima papan, berbanding dengan papan BPB yang terhasil menggunakan serat tidak dirawat. Hal ini disebabkan pembuangan kotoran serat menghasilkan penyatuan fizikal yang sangat baik antara serat. Sifat semulajadi pada papan BPB juga telah bertukar dari hidrofilik kepada hidrofobik, kerana molekul-molekul air dilepaskan dari serat semasa rawatan alkali. Keputusan ini disokong melalui analisa Mikroskop Pengimbas Elektron (SEM) yang menunjukkan permukaan serat rotan RFW lebih jelas dan permukaan papan BPB yang lebih kasar.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Ganiron TUJ. (2013) An investigation of moisture performance of sawdust and banana peels ply board as non-veneer panel. International J. of u- and e- Service, Science and Technology, 6(3):43-54.
[2] Hashim R, Wan Nadhari WS, Sato MO, Hiziroglu S, Kawamura F, Sugimoto T, Seng TG, Tanaka R. (2012) Properties of binderless particleboard panels manufactured from oil palm biomass. BioResources, 7(1):1352-1365.
[3] Quintana G, Velasquez J, Betancourt S, Ganan P. (2009) Binderless fiberboard from steam exploded banana bunch. Industrial Crops and Products, 29(1):60-66.
[4] Okuda N, Sato M. (2004) Manufacture and mechanical properties of binderless boards from kenaf core. J. of Wood Science, 50(1):53-61.
[5] Xu J, Widyorini R, Yamauchi H. (2006) Development of binderless fibreboard from kenaf core. J. of Wood Science, 52(3):236-243.
[6] Panyakaew S, Fotios S. (2011) New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7):1732-1739.
[7] Zhou RX, Zheng F, Li H, Lu C. (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7):1070-1074.
[8] Luo P, Yang C. (2012) Production of binderless particleboard using rice straw pre-treated with liquid hot water. Applied Mechanics and Materials, 200:331-334.
[9] Olorunnisola AO, Adefisan OO. (2001) Trial production and testing of cement-bonded particleboard from rattan furniture waste. Wood and Fiber Science, 34(1):116-124.
[10] Olorunnisola AO. (2004) Briquetting of rattan furniture waste. J. of Bamboo and Rattan, 3(2):139-149.
[11] Geng X, Zhang SY, Deng J. (2006) Alkaline treatment of black spruce bark for the manufacture of binderless fiberboard. J. of Wood Chemistry and Technology, 26:313–324.
[12] Das S, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, Lang S, Rowell RM. (2001) Effect of steam pre-treatment of jute fibre on dimensional stability of jute composite. J. of Applied Polymer Science, 76(11):1652-1661.
[13] Corradini E, Morais L, Rosa M, Mazzetto S, Mattoso L, Agnelli J. (2006) A preliminary study for the use of natural fibres as reinforcement in starch-glutten-glycerol matrix. Macromolecular Symposia, 245-246: 558-564.
[14] JIS - A5908 Particleboards (2003) Japanese Standards Association, Tokyo, Japan, pp 1-24.
[15] Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J. (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16):3000-3011.
[16] Rokbi M, Osmani H, Imad A, Benseddiq N. (2011) Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Engineering, 10:2092-2097.
[17] Ramadevi P, Sampathkumar D, Srinivasa CV, Bennehalli B. (2012) Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources, 7(3):3515-3524.
[18] Pelaez-Samaniegoa MR, Yadamac V, Garcia-Pereza M, Lowelle E. (2015) Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. Biomass and Bioenergy, 81:117-128.
[19] Machaka M, Basha H, Chakra DHA, Elkordi A. (2014) Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete. European Scientific J., 10(12):186-195.
[20] Xia Z, Li XXJ. (2010) Effect of alkaline treatment of straw fiber on mechanical properties of cement-bonded straw fiber board. In Mechanic Automation and Control Engineering (MACE), International Conference IEEE: 26-28 June 2010; Wuhan, China; pp. 3006-3008.
[21] Gonzalez-Murillo C, Ansell MP. (2009) Mechanical properties of henequen fibre/epoxy resin composites. Mechanics of Composite Materials, 45:435-442.
[22] Yan L, Chouw N, Yuan X. (2012) Improving the mechanical properties of natural fiber fabric reinforced epoxy composites by alkali treatment. J. of Reinforced Plastic and Composites, 31(6):425-437.
[23] Esteves BM, Pereira HM. (2009) Wood modification by heat treatment: A review. BioResources, 4(1):370-404.
[24] Cyras VP, Vallo C, Kenny JM, Vazquez A. (2004) Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre. J. of Composite Materials, 38(16):1387-1399.
[25] Ebanyenle E, Oteng-Amoako AA. (2003) Anatomy and identification of five indegeneous rattan species of Ghana. Ghana J. Forestry, 11(2):77-90.
[26] Srinivasa CS, Suresh YJ, Prema KWP. (2012) Mechanical behaviour of areca fiber reinforced epoxy composites. Advanced Polymer Technology, 31(4):319-330.
[27] Channalli M, Siddeswarappa DB. (2015) Effect of alkali treatments on natural filler content performance of polymer composites. International J. of Engineering Research & Technology (IJERT), 4(10):11-16.
[28] Kabir MM, Wang H, Aravinthan T, Cardona F, Lau KT. (2011) Effects of natural fiber surface on composite properties: A review. In 1st International Postgraduate Conference on Energy, Designing and Developing the Built Environment for Sustainable Wellbeing (eddBE2011) Proceedings: 27-29 April 2011; Brisbane, Australia; pp. 94-99.
[29] TAPPI Standards and Suggested Methods. TAPPI Press, Atlanta, GA, USA.
[30] Wise LE, Murphy M, D’Addieco AA. (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Paper Trade J., 122(2):35-43.

Downloads

Published

2018-06-01

How to Cite

Ahmad, Z., Tajuddin, M., Salim, N. F. F., & Halim, Z. (2018). EFFECT OF ALKALINE TREATMENT ON PROPERTIES OF RATTAN WASTE AND FABRICATED BINDERLESS PARTICLEBOARD. IIUM Engineering Journal, 19(1), 185–196. https://doi.org/10.31436/iiumej.v19i1.879

Issue

Section

Materials and Manufacturing Engineering