AMORPHOUS STRUCTURE IN CU-ZN-V-AL OXIDE COMPOSITE CATALYST FOR METHANOL REFORMING

Authors

  • Mohd Sabri Mahmud Faculty of Chemical and Natural Resources Engineering, Tun Razak Highway, Gambang, 26300 Kuantan Pahang
  • Zahira Yaakob
  • Abu Bakar Mohamad
  • Wan Ramli Wan Daud
  • Vo Nguyen Dai Viet

DOI:

https://doi.org/10.31436/iiumej.v19i1.808

Abstract

Cu-Zn-V-Al oxide composite catalysts were prepared using a co-precipitation method to investigate hydrogen and carbon monoxide yield of a methanol reforming reaction. The mass compositions of metals were initially determined on the Simplex Centroid statistical design. The effects of various metal compositions on the physicochemical properties of the catalyst were studied via X-ray diffractogram (XRD), temperature-programmed reduction (TPR) analyses, and reaction. XRD revealed crystals in the samples. Crystalline CuO in Cu30V30Al40 formed with the addition of zinc oxide at the metal loading below 30 wt%. A combination of zinc oxide and vanadia, however, had no Zn-V complex crystal but its scanning electron microscopy image showed the formation of string structures (AS). The catalyst that contained the AS exhibited a broad hydrogen reduction peak in the TPR analysis. Vanadium at a loading below 40 wt% with various zinc and cuprum compositions also formed small ASs and exhibited single TPR peaks. A reaction yield study revealed the optimum compositions of metal oxides when the data was fitted by response surface plots. The catalysts with high content of AS were not at the peaks however. Cu-Zn based catalysts showed the highest hydrogen yield for the reaction temperature of between 150 oC to 225 oC and vanadia-promoted catalyst with AS only appeared to be the optimum catalyst at the higher temperature.

ABSTRAK: Mangkin komposit oksida Cu-Zn-V-Al disediakan menggunakan kaedah pemendakan bersama untuk mengkaji hasil hidrogen dan karbon monoksida daripada tindak balas pembentukan semula metanol. Komposisi jisim logam-logam dikenal pasti terlebih dahulu menggunakan reka bentuk statistik Simplex Centroid. Pelbagai kesan komposisi logam terhadap sifat-sifat mangkin kimia-fizikal dikaji menerusi analisis-analisis pembelauan sinar-X (XRD) dan program penurunan suhu teratur (TPR), dan tindak balas kimia. Hasil analisis XRD menzahirkan kristal pada sampel-sampel. Hablur CuO terbentuk dalam Cu30V30Al40 dengan penambahan zink oksida pada muatan logam kurang daripada 30% berat. Gabungan zink oksida dan vanadia walau bagaimanapun tidak menghasilkan hablur kompleks Zn-V, namun imbasan imej mikroskop elektron menunjukkan pembentukan struktur tetali (AS). Mangkin yang mengandungi AS menunjukkan penurunan puncak hidrogen yang lebar dalam analisis TPR. Vanadium pada muatan berat logam kurang daripada 40% berbanding komposisi zink dan kuprum juga membentuk AS kecil dan menghasilkan puncak-puncak TPR tunggal. Hasil tindak balas kajian menunjukkan komposisi optimum oksida logam apabila data ujikaji dipadankan dengan menggunakan plot permukaan respon. Mangkin yang mempunyai kandungan AS tertinggi bagaimanapun tidak berada pada puncak. Mangkin berasaskan Cu-Zn menunjukkan hasil hidrogen tertinggi bagi suhu tindak balas antara 150 oC hingga 225 oC dan mangkin yang ditambah vanadia bersama AS pula muncul sebagai mangkin optimum pada suhu lebih tinggi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Yong-Feng, L., D. Xin-Fa, and L. Wei-Ming (2004) Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol. International Journal of Hydrogen Energy, 29 1617-1621.
[2] Dahl, P.J., T.S. Christensen, S. Winter-Madsen, and S.M. King (2014). Proven autothermal reforming technology for modern large-scale methanol plants. in Nitrogen + Syngas 2014 International Conference & Exhibition. Paris.
[3] Huang, X., L. Ma, and M.S. Wainwright (2004) The influence of Cr, Zn and Co additives on the performance of skeletal cuprum catalysts for methanol synthesis and related reactions. Applied Catalysis A: General, 257 (2): 235-243.
[4] Reuse, P., A. Renken, K. Haas-Santo, O. Görke, and K. Schubert (2004) Hydrogen production for fuel cell application in an autothermal micro-channel reactor. Chemical Engineering Journal, 101 133-141.
[5] Courtine, P. and E. Bordes (1997) Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis. Applied Catalysis A: General, 157 (1–2): 45-65.
[6] Park, J.E., S.-D. Yim, C.S. Kim, and E.D. Park (2014) Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst. International Journal of Hydrogen Energy, 39 (22): 11517-11527.
[7] Ma, Y., G. Guan, C. Shi, A. Zhu, X. Hao, Z. Wang, K. Kusakabe, and A. Abudula (2014) Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. International Journal of Hydrogen Energy, 39 (1): 258-266.
[8] Agrell, J., H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, and J.L.G. Fierro (2003) Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis, 219 389-403.
[9] Lima, A.A.G., M. Nele, E.L. Moreno, and H.M.C. Andrade (1998) Composition effects on the activity of Cu–ZnO–Al2O3 based catalysts for the water gas shift reaction: A statistical approach. Applied Catalysis A: General, 171 (1): 31-43.
[10] Sekizawa, K., S.-i. Yano, K. Eguchi, and H. Arai (1998) Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Applied Catalysis A: General, 169 (2): 291-297.
[11] Begum, M., Preparation and Characterization of Cu-Al Catalysts for The Steam-Methanol Reforming Reaction, in Dep of Chemical and Process Engineering. 2000, UKM: Selangor.
[12] Prime13. Altamira Instruments: The First Name in Custom Reactor Systems. 2010 2nd February 2015; Available: http://www.altamirainstruments.com/.
[13] Agrell, J., G. Germani, S.G. Järås, and M. Boutonnet (2002) Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Applied Catalysis A: General, 6383 1-13.
[14] Agrell, J., M. Boutonnet, and J.L.G. Fierro (2003) Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways. Applied Catalysis A: General, 253 (1): 213-223.
[15] Richardson, J.T., Principles of Catalyst Development, ed. 1. 1989, New York: Plenum Press.
[16] Idem, R.O. and N.N. Bakhshi (1996) Kinetic modeling of the production of hydrogen from the methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst. Chemical Engineering Science, 51 (14): 3697-3708.
[17] Reddy, E.P. and R.S. Varma (2004) Preparation, characterization, and activity of Al2O3-supported V2O5 catalysts. Journal of Catalysis, 221 (1): 93-101.
[18] Lindström, B., L.J. Pettersson, and P.G. Menon (2002) Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on g-alumina for methanol reforming for fuel cell vehicles. Applied Catalysis A: General, 234 111-125.
[19] Lindström, B., J. Agrell, and L.J. Pettersson (2002) Combined methanol reforming for hydrogen generation over monolithic catalysts. Chemical Engineering Journal, 4053 1-11.
[20] Inumaru, K., M. Misono, and T. Okuhara (1997) Structure and catalysis of vanadium oxide overlayers on oxide supports. Applied Catalysis A: General, 149 (1): 133-149.
[21] Botto, I.L., M.B. Vassallo, E.J. Baran, and G. Minelli (1997) IR spectra of VO2 and V2O3. Materials Chemistry and Physics, 50 267-270.
[22] Choi, Y. and H.G. Stenger (2002) Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst. Applied Catalysis B: Environmental, 38 259-269.

Downloads

Published

2018-06-01

How to Cite

Mahmud, M. S., Yaakob, Z., Mohamad, A. B., Wan Daud, W. R., & Dai Viet, V. N. (2018). AMORPHOUS STRUCTURE IN CU-ZN-V-AL OXIDE COMPOSITE CATALYST FOR METHANOL REFORMING. IIUM Engineering Journal, 19(1), 197–214. https://doi.org/10.31436/iiumej.v19i1.808

Issue

Section

Materials and Manufacturing Engineering

Most read articles by the same author(s)