• Farah Hafidzah Ahmad Faculty of Chemical and Process Engineering Technology
  • Nurhamizah Ibrahim Department of Chemical Engineering https://orcid.org/0000-0002-8087-2997
  • Mohd Sabri Mahmud Faculty of Chemical and Natural Resources Engineering https://orcid.org/0000-0002-7806-7454
  • Waleed Ali Murshed Hasan Alhadadi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang, Malaysia. https://orcid.org/0000-0003-3457-5761
  • Suriyati Salleh Faculty of Chemical and Process Engineering Technology
  • Said Nurdin Chemical Engineering Department https://orcid.org/0000-0002-9292-6104




Cocoa shell waste, microwave assisted, alkali treatment, lignin removal, response surface methodology


This paper reports a study to determine the optimum conditions of microwave in assisting alkali treatment for removing lignin from cocoa shell waste (CSW). The CSW was mixed with 5% of NaOH solution at the ratio of 1: 10 of weight to volume of the alkaline before being irradiated in a microwave oven. Various microwave powers (200-400 W), temperature settings (60-80 °C) and irradiation times (10-20 min) were tested on 15 samples set by the Box-Behnken design. The lignin removal was analysed using a 72 % sulfuric acid treatment method. A quadratic equation was employed to the response surface and statistical analysis conducted to confirm the adequacy of the model. The plots show that the optimum microwave conditions are 400 W, 76 °C and 19 min, which were capable to remove 86.57% of lignin. Thermogravimetric analysis and micrographs revealed different decomposition temperature of lignin and morphology of extensively-pored surface of treated CSW, respectively.

ABSTRAK: Kajian ini adalah berkaitan penentuan keadaan optimal ketuhar gelombang mikro bagi membantu menyingkirkan lignin daripada sisa kulit biji koko (CSW) menggunakan rawatan alkali. CSW dicampurkan dengan larutan NaOH 5 % pada nisbah 1:10 berat kepada isipadu larutan alkali sebelum campuran dipanaskan ke dalam ketuhar gelombang mikro. Pelbagai keadaan ujian dibuat pada ketuhar gelombang mikro seperti tenaga (200-400 W), suhu ketuhar (60-80 °C) dan masa pemanasan (10-20 min) ke atas 15 sampel mengikut reka bentuk statistik Box-Behnken. Kadar penyingkiran lignin ditentukan dengan menggunakan kaedah rawatan larutan asid sulfurik berkepekatan 72 %. Persamaan kuadratik telah digunakan ke atas permukaan respon dan analisis statistik telah dilakukan bagi memastikan kesesuaian model. Plot-plot menunjukkan keadaan optima ketuhar gelombang mikro adalah pada 400 W, 76 °C dan 19 min iaitu berupaya menyingkirkan sebanyak 86.57% lignin. Analisis thermogravimetri dan mikrograf masing-masing menunjukkan perbezaan suhu penguraian lignin dan morfologi permukaan CSW yang dirawat didapati berliang dengan banyaknya.


Download data is not yet available.


Balentic JP, A?kar ?, Jokic S, Jozinovic A, Babic J, Mili?evic B, Ubaric D, Pavlovic N. (2018) Cocoa shell: A by-product with great potential for wide application. Molecules, 23 (6): 1-14. doi: 10.3390/molecules23061404. DOI: https://doi.org/10.3390/molecules23061404

Handojo L, Triharyogi H, Indarto A. (2019) Cocoa bean shell waste as potential raw material for dietary fiber powder. Int J Recycl Org Waste Agric., 8: 485-491.

doi: 10.1007/s40093-019-0271-9 DOI: https://doi.org/10.1007/s40093-019-0271-9

Joki? S, Gagi? T, Knez E, Ubari? D, Kerget M. (2018) Separation of active compounds from food by-product (Cocoa Shell) using subcritical water extraction. Molecules, 23(6): 1408. doi: 10.3390/molecules23061408 DOI: https://doi.org/10.3390/molecules23061408

Fioresi F, Vieillard J, Bargougui R, Bouazizi N, Fotsing PN, Woumfo ED, Brun N, Mofaddel N, Le Derf F. (2017) Chemical modification of the cocoa shell surface using diazonium salts. Journal of Colloid and Interface Science, 494: 92-97. doi: 10.1016/j.jcis.2017.01.069. DOI: https://doi.org/10.1016/j.jcis.2017.01.069

Foon CS, May CY, Liang YC, Ngan MA, Basiron Y. (2005) Palm biodiesel: Gearing towards Malaysian biodiesel standards. Palm oil developments (POD) 42: 28-34.

Rojo-Poveda O, Barbosa-Pereira L, Zeppa G, Stévigny C (2020) Cocoa bean shell—a by-product with nutritional properties and biofunctional potential. Nutrients 12(4): 1-29.

doi: 10.3390/nu12041123. DOI: https://doi.org/10.3390/nu12041123

Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. 243947.

doi: 10.1155/2015/243947 DOI: https://doi.org/10.1155/2015/243947

Balaji A, Karthikeyan B, Sundar Raj C (2015) Bagasse fiber – The future biocomposite material: A review. Int. J. ChemTech Res, 7 (1): 223-233.

Sood M, Dwivedi G. (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J Pet., 27(4): 775-783.

doi: 10.1016/j.ejpe.2017.11.005 DOI: https://doi.org/10.1016/j.ejpe.2017.11.005

Husseinsyah S, Marliza MZ, Selvi E. (2014) Biocomposites from polypropylene and corn cob: Effect maleic anhydride grafted polypropylene. Advances in materials Research, 3(3): 129-137. DOI: https://doi.org/10.12989/amr.2014.3.3.129

Laghari SM. Isa MH, Abdullah A, Laghari AJ, Saleem H. (2014) Microwave individual and combined pre-treatments on lignocellulosic biomasses. IOSR J Eng., 4(2): 14-28.

doi: 10.9790/3021-04261427 DOI: https://doi.org/10.9790/3021-04261427

Nomanbhay SM, Hussain R, Palanisamy K. (2013) Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, 3(1): 7-17. doi: 10.4236/jsbs.2013.31002. DOI: https://doi.org/10.4236/jsbs.2013.31002

Kucharska K, Rybarczyk P, Ho?owacz I, ?ukajtis R, Glinka M, Kami?ski M. (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11): 1-32. doi: 10.3390/molecules23112937. DOI: https://doi.org/10.3390/molecules23112937

Rajesh M, Pitchaimani J, Rajini N. (2016) Free Vibration characteristics of banana/sisal natural fibers reinforced hybrid polymer composite beam. Procedia Engineering, 144: 1055-1059. doi: 10.1016/j.proeng.2016.05.056. DOI: https://doi.org/10.1016/j.proeng.2016.05.056

Budiyono, Wicaksono A, Rahmawan A, Hawali Abdul Matin H, Gumilang Kencana Wardani L, Djoko Kusworo T, Sumardiono S. (2017) The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste. MATEC Web Conf. doi: 10.1051/matecconf/201710102011 DOI: https://doi.org/10.1051/matecconf/201710102011

Modenbach AA, Nokes SE. (2014) Effects of sodium hydroxide pretreatment on structural components of biomass. Transactions of the ASABE, 57(4): 1187-1198.

doi: 10.13031/trans.57.10046. DOI: https://doi.org/10.13031/trans.57.10046

Sombatpraiwan S, Junyusen T, Treeamnak T, Junyusen P. (2019) Optimization of microwave?assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food and Energy Security (October 2018): e00174.

doi: 10.1002/fes3.174. DOI: https://doi.org/10.1002/fes3.174

Agu OS, Tabil LG, Meda V, Dumonceaux T, Mupondwav E. (2019) Pretreatment of Crop Residues by Application of Microwave Heating and Alkaline Solution for Biofuel Processing: A Review. Renew Resour Biorefineries. doi: 10.5772/intechopen.79103 DOI: https://doi.org/10.5772/intechopen.79103

Ethaib S, Omar R, Mazlina M, Radiah A, Syafiie S, Harun MY. (2016) Effect of microwave-assisted acid or alkali pretreatment on sugar release from Dragon fruit foliage. Int. Food Res. J., 23 (Suppl): S149-S154

Safari A, Karimi K, Shafiei M. (2017) Dilute alkali pretreatment of softwood pine: A biorefinery approach. Bioresource Technology, 234: 67-76.

doi: 10.1016/j.biortech.2017.03.030. DOI: https://doi.org/10.1016/j.biortech.2017.03.030

Lai L, Idris A, Yusof NM. (2014) Lignin extraction from oil palm trunk by microwave-alkali technique. Malaysian Journal of Fundamental and Applied Sciences, 10(2): 59-64. DOI: https://doi.org/10.11113/mjfas.v10n2.56

Duan D, Ruan R, Wang Y, Liu Y, Dai L, Zhao Y, Zhou Y, Wu Q. (2018) Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresour. Technol., 251: 57-62. doi: 10.1016/j.biortech.2017.12.022 DOI: https://doi.org/10.1016/j.biortech.2017.12.022

Vardhini KJV, Murugan R, Selvi CT, Surjit R. (2016) Optimisation of alkali treatment of banana fibres on lignin removal. Indian Journal of Fibre and Textile Research, 41: 156-160.

Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. (2006) In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 20(1): 388-393. doi: 10.1021/ef0580117. DOI: https://doi.org/10.1021/ef0580117

Sushmitha D, Suranai S. (2019) Microwave-assisted alkali-peroxide treated sawdust for delignification and its characterisation. in: Waste Valoris. Recycl. Singapore, Springer Singapore. pp 527–537. DOI: https://doi.org/10.1007/978-981-13-2784-1_50

Waters CL, Janupala RR, Mallinson RG, Lobban LL. (2017) Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of Analytical and Applied Pyrolysis, 126: 380-389. doi: 10.1016/j.jaap.2017.05.008. DOI: https://doi.org/10.1016/j.jaap.2017.05.008

Yew BS, Muhamad M, Mohamed SB, Wee FH. (2019) Effect of alkaline treatment on structural characterisation, thermal degradation and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3): 653-659. doi: 10.17576/jsm-2019-4803-19. DOI: https://doi.org/10.17576/jsm-2019-4803-19

Pua FL, Sajab MS, Chia CH, Zakaria S, Rahman IA, Salit MS. (2013) Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3): 460-465. doi: 10.1016/j.jece.2013.06.012. DOI: https://doi.org/10.1016/j.jece.2013.06.012




How to Cite

Ahmad, F. H., Ibrahim, N., Mahmud, M. S., Hasan Alhadadi, W. A. M., Salleh, S., & Nurdin, S. (2021). MICROWAVE IRRADIATION OPTIMIZATION FOR EFFICIENT LIGNIN REMOVAL FROM COCOA SHELL WASTE USING ALKALI . IIUM Engineering Journal, 22(2), 21–30. https://doi.org/10.31436/iiumej.v22i2.1608



Chemical and Biotechnology Engineering

Most read articles by the same author(s)