TOWARDS AN EFFICIENT TRAFFIC CONGESTION PREDICTION METHOD BASED ON NEURAL NETWORKS AND BIG GPS DATA
DOI:
https://doi.org/10.31436/iiumej.v20i1.997Keywords:
Neural Network, traffic congestion prediction, big GPS tracesAbstract
ABSTRACT: The prediction of accurate traffic information such as speed, travel time, and congestion state is a very important task in many Intelligent Transportations Systems (ITS) applications. However, the dynamic changes in traffic conditions make this task harder. In fact, the type of road, such as the freeways and the highways in urban regions, can influence the driving speeds and the congestion state of the corresponding road. In this paper, we present a NNs-based model to predict the congestion state in roads. Our model handles new inputs and distinguishes the dynamic traffic patterns in two different types of roads: highways and freeways. The model has been tested using a big GPS database gathered from vehicles circulating in Tunisia. The NNs-based model has shown their capabilities of detecting the nonlinearity of dynamic changes and different patterns of roads compared to other nonparametric techniques from the literature.
ABSTRAK: Ramalan maklumat trafik yang tepat seperti kelajuan, masa perjalanan dan keadaan kesesakan adalah tugas yang sangat penting dalam banyak aplikasi Sistem Pengangkutan Pintar (ITS). Walau bagaimanapun, perubahan keadaan lalu lintas yang dinamik menjadikan tugas ini menjadi lebih sukar. Malah, jenis jalan raya, seperti jalan raya dan lebuh raya di kawasan bandar, boleh mempengaruhi kelajuan memandu dan keadaan kesesakan jalan yang sama. Dalam makalah ini, kami membentangkan model berasaskan NN untuk meramalkan keadaan kesesakan di jalan raya. Model kami mengendalikan input baru dan membezakan corak trafik dinamik dalam dua jenis jalan raya yang lebuh raya dan jalan raya. Model ini telah diuji menggunakan pangkalan data GPS yang besar yang dikumpulkan dari kenderaan yang beredar di Tunisia. Model berasaskan NNs telah menunjukkan keupayaan mereka untuk mengesan ketiadaan perubahan dinamik dan pola jalan yang berbeza berbanding dengan teknik nonparametrik yang lain dari kesusasteraan.
Downloads
Metrics
References
Vlahogianni EI, Karlaftis MG, Golias JC. (2014) Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C, 43: 3-19. DOI: https://doi.org/10.1016/j.trc.2014.01.005
Robinson S, Polak J. (2005) Modeling urban link travel time with inductive loop detector data by using the k-NN method. Transportation Research Record: Journal of the Transportation Research Board, (1935): 47-56. DOI: https://doi.org/10.1177/0361198105193500106
El Faouzi NE, Klein LA, De Mouzon O. (2009) Improving travel time estimates from inductive loop and toll collection data with Dempster–Shafer data fusion. Transportation Research Record, 2129(1): 73-80. DOI: https://doi.org/10.3141/2129-09
Lu CCJ. (2012) An adaptive system for predicting freeway travel times, International Journal of Information Technology & Decision Making, 11(4): 727-747. DOI: https://doi.org/10.1142/S0219622012500186
Bernaś M, Płaczek B, Porwik P, Pamuła T. (2014) Segmentation of vehicle detector data for improved k-nearest neighbours-based traffic flow prediction. IET Intelligent Transport Systems, 9(3): 264-274.
Zhang S, Wu G, Costeira JP, Moura JM. (2017). Understanding traffic density from large-scale web camera data. In : Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. 5898-5907.
Yao B, Chen C, Cao Q, Jin L, Zhang M, Zhu H, Yu B. (2017) Short‐term traffic speed prediction for an urban corridor. Computer‐Aided Civil and Infrastructure Engineering, 32(2): 154-169. DOI: https://doi.org/10.1111/mice.12221
Elleuch W, Wali A, Alimi AM. (2016) Intelligent Traffic Congestion Prediction System Based on ANN and Decision Tree Using Big GPS Traces. In : International Conference on Intelligent Systems Design and Applications. Springer, Cham, 2016. pp. 478-487.
Smith BL, Demetsky MJ. (1997) Traffic flow forecasting: Comparison of modeling approaches. Journal of Transportation Engineering, 123(4): 261-266.
Williams B, Durvasula P, Brown D. (1998). Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record: Journal of the Transportation Research Board, (1644): 132-141.
Lam WH, Tang YF, Chan KS, Tam ML. (2006) Short-term hourly traffic forecasts using Hong Kong annual traffic census. Transportation, 33(3): 291-310. DOI: https://doi.org/10.1007/s11116-005-0327-8
Lee S, Fambro D. (1999) Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Record: Journal of the Transportation Research Board, (1678): 179-188. DOI: https://doi.org/10.3141/1678-22
Park J, Murphey YL, McGee R, Kristinsson JG, Kuang ML, Phillips AM. (2014). Intelligent trip modeling for the prediction of an origin–destination traveling speed profile. IEEE Transactions on Intelligent Transportation Systems, 15(3): 1039-1053.
Zhang L, Liu Q, Yang W, Wei N, Dong D. (2013) An improved k-nearest neighbor model for short-term traffic flow prediction. Procedia-Social and Behavioral Sciences, 96: 653-662. DOI: https://doi.org/10.1016/j.sbspro.2013.08.076
Wu Y, Tan H, Peter J, Shen B, Ran B. (2015). Short-term traffic flow prediction based on multilinear analysis and k-nearest neighbor regression. In : 15th COTA International Conference of Transportation ProfessionalsChinese Overseas Transportation Association (COTA) Beijing Jiaotong UniversityTransportation Research BoardInstitute of Transportation Engineers (ITE) American Society of Civil Engineers: 556-569.
Yao B, Chen C, Cao Q, Jin L, Zhang M, Zhu H, Yu B. (2017). Short‐Term Traffic Speed Prediction for an Urban Corridor. Computer‐Aided Civil and Infrastructure Engineering, 32(2): 154-169.
Fan SKS, Su CJ, Nien HT, Tsai PF, Cheng CY. (2018). Using machine learning and big data approaches to predict travel time based on historical and real-time data from Taiwan electronic toll collection. Soft Computing, 22(17): 5707-5718.
Lopez-Garcia P, Onieva E, Osaba E, Masegosa AD, Perallos AA. (2016). Hybrid Method for Short-Term Traffic Congestion Forecasting Using Genetic Algorithms and Cross Entropy. IEEE Trans. Intelligent Transportation Systems, 17(2): 557-569.
Sharma B, Kumar S, Tiwari P, Yadav P, Nezhurina MI. (2018). ANN based short-term traffic flow forecasting in undivided two lane highway. Journal of Big Data, 5(1), 48. Ciskowski P, Janik A, Bazan M, Halawa K, Janiczek T, Rusiecki A. (2016). Estimation of travel time in the city based on intelligent transportation system traffic data with the use of neural networksIn : International Conference on Dependability and Complex Systems. Springer, Cham, 2016. p. 85-95.
Kumar K, Parida M, Katiyar VK. (2013). Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia-Social and Behavioral Sciences, 104: 755-764.
Laflamme EM, Ossenbruggen PJ. (2017). Effect of time-of-day and day-of-the-week on congestion duration and breakdown: A case study at a bottleneck in Salem, NH. Journal of Traffic and Transportation Engineering (English edition), 4(1): 31-40.
Park J, Murphey YL, McGee R, Kristinsson JG, Kuang ML, Phillips AM. (2014). Intelligent trip modeling for the prediction of an origin–destination traveling speed profile. IEEE Transactions on Intelligent Transportation Systems, 15(3): 1039-1053.
Elleuch W, Wali A, Alimi AM. (2015). An investigation of parallel road map inference from big GPS traces data. Procedia Computer Science, 53: 131-140.
Elleuch W, Wali A, Alimi AM. (2014). Mining road map from big database of GPS data. 2014 14th International Conference on Hybrid Intelligent Systems (HIS), 193-198. IEEE. DOI: https://doi.org/10.1109/HIS.2014.7086197
Elleuch W, Wali A, Alimi AM. (2015). Collection and exploration of GPS based vehicle traces database. In 2015 4th International Conference on Advanced Logistics and Transport (ICALT) 275-280. IEEE. DOI: https://doi.org/10.1109/ICAdLT.2015.7136629